Yu Yen-Yun, Fletcher P Thomas, Awate Suyash P
Med Image Comput Comput Assist Interv. 2014;17(Pt 3):9-16. doi: 10.1007/978-3-319-10443-0_2.
This paper proposes a novel method for the analysis of anatomical shapes present in biomedical image data. Motivated by the natural organization of population data into multiple groups, this paper presents a novel hierarchical generative statistical model on shapes. The proposed method represents shapes using pointsets and defines a joint distribution on the population's (i) shape variables and (ii) object-boundary data. The proposed method solves for optimal (i) point locations, (ii) correspondences, and (iii) model-parameter values as a single optimization problem. The optimization uses expectation maximization relying on a novel Markov-chain Monte-Carlo algorithm for sampling in Kendall shape space. Results on clinical brain images demonstrate advantages over the state of the art.
本文提出了一种用于分析生物医学图像数据中解剖形状的新方法。受群体数据自然组织成多个组的启发,本文提出了一种新的形状层次生成统计模型。所提出的方法使用点集来表示形状,并定义了群体的(i)形状变量和(ii)对象边界数据上的联合分布。所提出的方法将最优的(i)点位置、(ii)对应关系和(iii)模型参数值作为一个单一的优化问题来求解。该优化使用期望最大化,依赖于一种用于在肯德尔形状空间中采样的新型马尔可夫链蒙特卡罗算法。临床脑图像的结果证明了该方法优于现有技术。