Suppr超能文献

用于多组形状分析的分层贝叶斯建模、估计和抽样

Hierarchical bayesian modeling, estimation, and sampling for multigroup shape analysis.

作者信息

Yu Yen-Yun, Fletcher P Thomas, Awate Suyash P

出版信息

Med Image Comput Comput Assist Interv. 2014;17(Pt 3):9-16. doi: 10.1007/978-3-319-10443-0_2.

Abstract

This paper proposes a novel method for the analysis of anatomical shapes present in biomedical image data. Motivated by the natural organization of population data into multiple groups, this paper presents a novel hierarchical generative statistical model on shapes. The proposed method represents shapes using pointsets and defines a joint distribution on the population's (i) shape variables and (ii) object-boundary data. The proposed method solves for optimal (i) point locations, (ii) correspondences, and (iii) model-parameter values as a single optimization problem. The optimization uses expectation maximization relying on a novel Markov-chain Monte-Carlo algorithm for sampling in Kendall shape space. Results on clinical brain images demonstrate advantages over the state of the art.

摘要

本文提出了一种用于分析生物医学图像数据中解剖形状的新方法。受群体数据自然组织成多个组的启发,本文提出了一种新的形状层次生成统计模型。所提出的方法使用点集来表示形状,并定义了群体的(i)形状变量和(ii)对象边界数据上的联合分布。所提出的方法将最优的(i)点位置、(ii)对应关系和(iii)模型参数值作为一个单一的优化问题来求解。该优化使用期望最大化,依赖于一种用于在肯德尔形状空间中采样的新型马尔可夫链蒙特卡罗算法。临床脑图像的结果证明了该方法优于现有技术。

相似文献

1
Hierarchical bayesian modeling, estimation, and sampling for multigroup shape analysis.
Med Image Comput Comput Assist Interv. 2014;17(Pt 3):9-16. doi: 10.1007/978-3-319-10443-0_2.
2
Bayesian estimation of regularization and atlas building in diffeomorphic image registration.
Inf Process Med Imaging. 2013;23:37-48. doi: 10.1007/978-3-642-38868-2_4.
3
Incorporating parameter uncertainty in Bayesian segmentation models: application to hippocampal subfield volumetry.
Med Image Comput Comput Assist Interv. 2012;15(Pt 3):50-7. doi: 10.1007/978-3-642-33454-2_7.
4
Improved inference in Bayesian segmentation using Monte Carlo sampling: application to hippocampal subfield volumetry.
Med Image Anal. 2013 Oct;17(7):766-78. doi: 10.1016/j.media.2013.04.005. Epub 2013 May 22.
5
A hierarchical geodesic model for diffeomorphic longitudinal shape analysis.
Inf Process Med Imaging. 2013;23:560-71. doi: 10.1007/978-3-642-38868-2_47.
6
Spline-based probabilistic model for anatomical landmark detection.
Med Image Comput Comput Assist Interv. 2006;9(Pt 1):849-56. doi: 10.1007/11866565_104.
7
Feature-preserving MRI denoising: a nonparametric empirical Bayes approach.
IEEE Trans Med Imaging. 2007 Sep;26(9):1242-55. doi: 10.1109/TMI.2007.900319.
8
Bayesian atlas estimation for the variability analysis of shape complexes.
Med Image Comput Comput Assist Interv. 2013;16(Pt 1):267-74. doi: 10.1007/978-3-642-40811-3_34.
9
Shape modeling and analysis with entropy-based particle systems.
Inf Process Med Imaging. 2007;20:333-45. doi: 10.1007/978-3-540-73273-0_28.
10
Statistical modeling of shape and appearance using the continuous medial representation.
Med Image Comput Comput Assist Interv. 2005;8(Pt 2):725-32. doi: 10.1007/11566489_89.

本文引用的文献

1
Particle-based shape analysis of multi-object complexes.
Med Image Comput Comput Assist Interv. 2008;11(Pt 1):477-85. doi: 10.1007/978-3-540-85988-8_57.
3
Surface matching via currents.
Inf Process Med Imaging. 2005;19:381-92. doi: 10.1007/11505730_32.
4
Minimum Description Length shape and appearance models.
Inf Process Med Imaging. 2003 Jul;18:51-62. doi: 10.1007/978-3-540-45087-0_5.
5
A minimum description length approach to statistical shape modeling.
IEEE Trans Med Imaging. 2002 May;21(5):525-37. doi: 10.1109/TMI.2002.1009388.
6
Automatic construction of eigenshape models by direct optimization.
Med Image Anal. 1998 Dec;2(4):303-14. doi: 10.1016/s1361-8415(98)80012-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验