Suppr超能文献

保留特征的磁共振成像去噪:一种非参数经验贝叶斯方法。

Feature-preserving MRI denoising: a nonparametric empirical Bayes approach.

作者信息

Awate Suyash P, Whitaker Ross T

机构信息

Scientific Computing and Imaging (SCI) Institute, Salt Lake City, UT 84112, USA.

出版信息

IEEE Trans Med Imaging. 2007 Sep;26(9):1242-55. doi: 10.1109/TMI.2007.900319.

Abstract

This paper presents a novel method for Bayesian denoising of magnetic resonance (MR) images that bootstraps itself by inferring the prior, i.e., the uncorrupted-image statistics, from the corrupted input data and the knowledge of the Rician noise model. The proposed method relies on principles from empirical Bayes (EB) estimation. It models the prior in a nonparametric Markov random field (MRF) framework and estimates this prior by optimizing an information-theoretic metric using the expectation-maximization algorithm. The generality and power of nonparametric modeling, coupled with the EB approach for prior estimation, avoids imposing ill-fitting prior models for denoising. The results demonstrate that, unlike typical denoising methods, the proposed method preserves most of the important features in brain MR images. Furthermore, this paper presents a novel Bayesian-inference algorithm on MRFs, namely iterated conditional entropy reduction (ICER). This paper also extends the application of the proposed method for denoising diffusion-weighted MR images. Validation results and quantitative comparisons with the state of the art in MR-image denoising clearly depict the advantages of the proposed method.

摘要

本文提出了一种用于磁共振(MR)图像贝叶斯去噪的新方法,该方法通过从 corrupted 的输入数据和莱斯噪声模型的知识中推断先验(即未 corrupted 图像的统计信息)来进行自引导。所提出的方法依赖于经验贝叶斯(EB)估计的原理。它在非参数马尔可夫随机场(MRF)框架中对先验进行建模,并通过使用期望最大化算法优化信息理论度量来估计该先验。非参数建模的通用性和强大功能,再加上用于先验估计的 EB 方法,避免了为去噪强加不合适的先验模型。结果表明,与典型的去噪方法不同,所提出的方法保留了脑 MR 图像中的大多数重要特征。此外,本文提出了一种关于 MRF 的新颖贝叶斯推理算法,即迭代条件熵减少(ICER)。本文还扩展了所提出的方法在去噪扩散加权 MR 图像方面的应用。验证结果以及与 MR 图像去噪领域现有技术的定量比较清楚地表明了所提出方法的优势。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验