Suppr超能文献

在贝叶斯分割模型中纳入参数不确定性:应用于海马体亚区域容积测量

Incorporating parameter uncertainty in Bayesian segmentation models: application to hippocampal subfield volumetry.

作者信息

Iglesias Juan Eugenio, Sabuncu Mert Rory, Van Leemput Koen

机构信息

Martinos Center for Biomedical Imaging, MGH, Harvard Medical School, USA.

出版信息

Med Image Comput Comput Assist Interv. 2012;15(Pt 3):50-7. doi: 10.1007/978-3-642-33454-2_7.

Abstract

Many successful segmentation algorithms are based on Bayesian models in which prior anatomical knowledge is combined with the available image information. However, these methods typically have many free parameters that are estimated to obtain point estimates only, whereas a faithful Bayesian analysis would also consider all possible alternate values these parameters may take. In this paper, we propose to incorporate the uncertainty of the free parameters in Bayesian segmentation models more accurately by using Monte Carlo sampling. We demonstrate our technique by sampling atlas warps in a recent method for hippocampal subfield segmentation, and show a significant improvement in an Alzheimer's disease classification task. As an additional benefit, the method also yields informative "error bars" on the segmentation results for each of the individual sub-structures.

摘要

许多成功的分割算法都基于贝叶斯模型,其中先验解剖学知识与可用图像信息相结合。然而,这些方法通常有许多自由参数,这些参数仅被估计以获得点估计值,而忠实的贝叶斯分析还会考虑这些参数可能取的所有可能的替代值。在本文中,我们建议通过使用蒙特卡罗采样更准确地将自由参数的不确定性纳入贝叶斯分割模型。我们通过在最近的海马亚区分割方法中对图谱变形进行采样来展示我们的技术,并在阿尔茨海默病分类任务中显示出显著的改进。作为额外的好处,该方法还为每个单独的子结构的分割结果生成信息丰富的“误差条”。

相似文献

本文引用的文献

1
Longitudinal brain MRI analysis with uncertain registration.具有不确定配准的纵向脑磁共振成像分析
Med Image Comput Comput Assist Interv. 2011;14(Pt 2):647-54. doi: 10.1007/978-3-642-23629-7_79.
2
Summarizing and visualizing uncertainty in non-rigid registration.非刚性配准中不确定性的总结与可视化
Med Image Comput Comput Assist Interv. 2010;13(Pt 2):554-61. doi: 10.1007/978-3-642-15745-5_68.
5
Adaptive segmentation of MRI data.MRI 数据的自适应分割。
IEEE Trans Med Imaging. 1996;15(4):429-42. doi: 10.1109/42.511747.
6
A Bayesian model for joint segmentation and registration.一种用于联合分割与配准的贝叶斯模型。
Neuroimage. 2006 May 15;31(1):228-39. doi: 10.1016/j.neuroimage.2005.11.044. Epub 2006 Feb 7.
7
Unified segmentation.统一分割
Neuroimage. 2005 Jul 1;26(3):839-51. doi: 10.1016/j.neuroimage.2005.02.018. Epub 2005 Apr 1.
8
Sequence-independent segmentation of magnetic resonance images.磁共振图像的序列无关分割
Neuroimage. 2004;23 Suppl 1:S69-84. doi: 10.1016/j.neuroimage.2004.07.016.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验