Suppr超能文献

九种估计耳道刺激水平方法的比较。

Comparison of nine methods to estimate ear-canal stimulus levels.

作者信息

Souza Natalie N, Dhar Sumitrajit, Neely Stephen T, Siegel Jonathan H

机构信息

Department of Communication Sciences and Disorders and Knowles Hearing Center, Northwestern University, 2240 Campus Drive, Evanston, Illinois 60208.

Boys Town National Research Hospital, 555 North 30th Street, Omaha, Nebraska 68131.

出版信息

J Acoust Soc Am. 2014 Oct;136(4):1768-87. doi: 10.1121/1.4894787.

Abstract

The reliability of nine measures of the stimulus level in the human ear canal was compared by measuring the sensitivity of behavioral hearing thresholds to changes in the depth of insertion of an otoacoustic emission probe. Four measures were the ear-canal pressure, the eardrum pressure estimated from it and the pressure measured in an ear simulator with and without compensation for insertion depth. The remaining five quantities were derived from the ear-canal pressure and the Thévenin-equivalent source characteristics of the probe: Forward pressure, initial forward pressure, the pressure transmitted into the middle ear, eardrum sound pressure estimated by summing the magnitudes of the forward and reverse pressure (integrated pressure) and absorbed power. Two sets of behavioral thresholds were measured in 26 subjects from 0.125 to 20 kHz, with the probe inserted at relatively deep and shallow positions in the ear canal. The greatest dependence on insertion depth was for transmitted pressure and absorbed power. The measures with the least dependence on insertion depth throughout the frequency range (best performance) included the depth-compensated simulator, eardrum, forward, and integrated pressures. Among these, forward pressure is advantageous because it quantifies stimulus phase.

摘要

通过测量行为听力阈值对耳声发射探头插入深度变化的敏感性,比较了人耳道中刺激水平的九种测量方法的可靠性。其中四种测量方法是耳道压力、据此估算的鼓膜压力以及在有和没有插入深度补偿的耳模拟器中测量的压力。其余五个量是从耳道压力和探头的戴维南等效源特性推导出来的:正向压力、初始正向压力、传入中耳的压力、通过将正向和反向压力的大小相加估算出的鼓膜声压(积分压力)以及吸收功率。在26名受试者中,将探头插入耳道相对较深和较浅的位置,测量了从0.125至20kHz的两组行为阈值。对插入深度依赖性最大的是传输压力和吸收功率。在整个频率范围内对插入深度依赖性最小(性能最佳)的测量方法包括深度补偿模拟器、鼓膜、正向和积分压力。其中,正向压力具有优势,因为它可以量化刺激相位。

相似文献

1
Comparison of nine methods to estimate ear-canal stimulus levels.
J Acoust Soc Am. 2014 Oct;136(4):1768-87. doi: 10.1121/1.4894787.
4
Compensating for ear-canal acoustics when measuring otoacoustic emissions.
J Acoust Soc Am. 2017 Jan;141(1):515. doi: 10.1121/1.4973618.
5
Behavioral hearing thresholds between 0.125 and 20 kHz using depth-compensated ear simulator calibration.
Ear Hear. 2012 May-Jun;33(3):315-29. doi: 10.1097/AUD.0b013e31823d7917.
7
Comparison between intensity and pressure as measures of sound level in the ear canal.
J Acoust Soc Am. 1998 Nov;104(5):2925-34. doi: 10.1121/1.423876.
9
A comparison of ear-canal-reflectance measurement methods in an ear simulator.
J Acoust Soc Am. 2019 Aug;146(2):1350. doi: 10.1121/1.5123379.

引用本文的文献

1
Cochlear Tuning in Early Aging Estimated with Three Methods.
Trends Hear. 2025 Jan-Dec;29:23312165251364675. doi: 10.1177/23312165251364675. Epub 2025 Jul 29.
3
The Ins and Outs of Distortion Product Otoacoustic Emission Growth: A Review.
J Assoc Res Otolaryngol. 2025 Feb;26(1):17-32. doi: 10.1007/s10162-024-00969-8. Epub 2024 Nov 27.
4
A Variable-Stimulus Distortion Product Otoacoustic Emission Screening Method to Match Cochlear Place-Specific Properties.
Ear Hear. 2025;46(2):421-432. doi: 10.1097/AUD.0000000000001594. Epub 2024 Oct 16.
5
Detection of mild sensory hearing loss using a joint reflection-distortion otoacoustic emission profile.
J Acoust Soc Am. 2024 Oct 1;156(4):2220-2236. doi: 10.1121/10.0030399.
8
Descriptive Characterization of High-Frequency Distortion Product Otoacoustic Emission Source Components in Children.
J Speech Lang Hear Res. 2023 Aug 3;66(8):2950-2966. doi: 10.1044/2023_JSLHR-23-00013. Epub 2023 Jul 19.
9
Rethinking the clinical utility of distortion-product otoacoustic emission (DPOAE) signal-to-noise ratio.
Int J Audiol. 2024 Jul;63(7):491-499. doi: 10.1080/14992027.2023.2215943. Epub 2023 Jun 2.
10
Minimum Detectable Differences in Electrocochleography Measurements: Bayesian-Based Predictions.
J Assoc Res Otolaryngol. 2023 Apr;24(2):217-237. doi: 10.1007/s10162-023-00888-0. Epub 2023 Feb 16.

本文引用的文献

1
An overview of wideband immittance measurements techniques and terminology: you say absorbance, I say reflectance.
Ear Hear. 2013 Jul;34 Suppl 1(0 1):9S-16S. doi: 10.1097/AUD.0b013e31829d5a14.
2
Behavioral hearing thresholds between 0.125 and 20 kHz using depth-compensated ear simulator calibration.
Ear Hear. 2012 May-Jun;33(3):315-29. doi: 10.1097/AUD.0b013e31823d7917.
3
Further assessment of forward pressure level for in situ calibration.
J Acoust Soc Am. 2011 Dec;130(6):3882-92. doi: 10.1121/1.3655878.
4
Inverse solution of ear-canal area function from reflectance.
J Acoust Soc Am. 2011 Dec;130(6):3873-81. doi: 10.1121/1.3654019.
7
Do "optimal" conditions improve distortion product otoacoustic emission test performance?
Ear Hear. 2011 Mar-Apr;32(2):230-7. doi: 10.1097/AUD.0b013e3181fa5da2.
8
Comparison of in-situ calibration methods for quantifying input to the middle ear.
J Acoust Soc Am. 2009 Dec;126(6):3114-24. doi: 10.1121/1.3243310.
9
An in situ calibration for hearing thresholds.
J Acoust Soc Am. 2009 Mar;125(3):1605-11. doi: 10.1121/1.3075551.
10
High-frequency click-evoked otoacoustic emissions and behavioral thresholds in humans.
J Acoust Soc Am. 2009 Feb;125(2):1014-32. doi: 10.1121/1.3056566.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验