Suppr超能文献

一般生灭过程的估计。

Estimation for general birth-death processes.

作者信息

Crawford Forrest W, Minin Vladimir N, Suchard Marc A

机构信息

Department of Biostatistics, Yale University, 60 College Street, Box 208034, New Haven, CT 06510 USA.

Department of Statistics, University of Washington, Padelford Hall C-315, Box 354322, Seattle, WA 98195-4322 USA.

出版信息

J Am Stat Assoc. 2014 Apr;109(506):730-747. doi: 10.1080/01621459.2013.866565.

Abstract

Birth-death processes (BDPs) are continuous-time Markov chains that track the number of "particles" in a system over time. While widely used in population biology, genetics and ecology, statistical inference of the instantaneous particle birth and death rates remains largely limited to restrictive linear BDPs in which per-particle birth and death rates are constant. Researchers often observe the number of particles at discrete times, necessitating data augmentation procedures such as expectation-maximization (EM) to find maximum likelihood estimates. For BDPs on finite state-spaces, there are powerful matrix methods for computing the conditional expectations needed for the E-step of the EM algorithm. For BDPs on infinite state-spaces, closed-form solutions for the E-step are available for some linear models, but most previous work has resorted to time-consuming simulation. Remarkably, we show that the E-step conditional expectations can be expressed as convolutions of computable transition probabilities for any general BDP with arbitrary rates. This important observation, along with a convenient continued fraction representation of the Laplace transforms of the transition probabilities, allows for novel and efficient computation of the conditional expectations for all BDPs, eliminating the need for truncation of the state-space or costly simulation. We use this insight to derive EM algorithms that yield maximum likelihood estimation for general BDPs characterized by various rate models, including generalized linear models. We show that our Laplace convolution technique outperforms competing methods when they are available and demonstrate a technique to accelerate EM algorithm convergence. We validate our approach using synthetic data and then apply our methods to cancer cell growth and estimation of mutation parameters in microsatellite evolution.

摘要

生死过程(BDPs)是连续时间马尔可夫链,用于跟踪系统中“粒子”数量随时间的变化。虽然在种群生物学、遗传学和生态学中广泛使用,但瞬时粒子出生率和死亡率的统计推断在很大程度上仍局限于限制性线性BDPs,其中每个粒子的出生率和死亡率是恒定的。研究人员通常在离散时间观察粒子数量,因此需要数据增强程序,如期望最大化(EM)来找到最大似然估计。对于有限状态空间上的BDPs,有强大的矩阵方法来计算EM算法E步所需的条件期望。对于无限状态空间上的BDPs,一些线性模型的E步有闭式解,但以前的大多数工作都依赖于耗时的模拟。值得注意的是,我们表明,对于任何具有任意速率的一般BDP,E步条件期望可以表示为可计算转移概率的卷积。这一重要观察结果,连同转移概率拉普拉斯变换的方便连分数表示,允许对所有BDP进行新颖而有效的条件期望计算,无需截断状态空间或进行昂贵的模拟。我们利用这一见解推导出EM算法,该算法可为以各种速率模型为特征的一般BDP(包括广义线性模型)提供最大似然估计。我们表明,当我们的拉普拉斯卷积技术可用时,它优于竞争方法,并展示了一种加速EM算法收敛的技术。我们使用合成数据验证了我们的方法,然后将我们的方法应用于癌细胞生长和微卫星进化中突变参数的估计。

相似文献

1
Estimation for general birth-death processes.一般生灭过程的估计。
J Am Stat Assoc. 2014 Apr;109(506):730-747. doi: 10.1080/01621459.2013.866565.
2
Computational methods for birth-death processes.出生-死亡过程的计算方法。
Wiley Interdiscip Rev Comput Stat. 2018 Mar-Apr;10(2). doi: 10.1002/wics.1423. Epub 2018 Jan 2.

引用本文的文献

4
Computational methods for birth-death processes.出生-死亡过程的计算方法。
Wiley Interdiscip Rev Comput Stat. 2018 Mar-Apr;10(2). doi: 10.1002/wics.1423. Epub 2018 Jan 2.

本文引用的文献

6
Mutational dynamics of microsatellites.微卫星的突变动态。
Mol Biotechnol. 2010 Mar;44(3):250-66. doi: 10.1007/s12033-009-9230-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验