Suppr超能文献

使用高达2000 s/mm²的b值对前列腺癌进行扩散加权成像的数学模型:与Gleason评分的相关性及感兴趣区分析的可重复性

Mathematical models for diffusion-weighted imaging of prostate cancer using b values up to 2000 s/mm(2) : correlation with Gleason score and repeatability of region of interest analysis.

作者信息

Toivonen Jussi, Merisaari Harri, Pesola Marko, Taimen Pekka, Boström Peter J, Pahikkala Tapio, Aronen Hannu J, Jambor Ivan

机构信息

Department of Diagnostic Radiology, University of Turku, Turku, Finland.

Department of Information Technology, University of Turku, Turku, Finland.

出版信息

Magn Reson Med. 2015 Oct;74(4):1116-24. doi: 10.1002/mrm.25482. Epub 2014 Oct 20.

Abstract

PURPOSE

To evaluate four mathematical models for diffusion weighted imaging (DWI) of prostate cancer (PCa) in terms of PCa detection and characterization.

METHODS

Fifty patients with histologically confirmed PCa underwent two repeated 3 Tesla DWI examinations using 12 equally distributed b values, the highest b value of 2000 s/mm(2) . Normalized mean signal intensities of regions-of-interest were fitted using monoexponential, kurtosis, stretched exponential, and biexponential models. Tumors were classified into low, intermediate, and high Gleason score groups. Areas under receiver operating characteristic curve (AUCs) were estimated to evaluate performance in PCa detection and Gleason score classifications. The fitted parameters were correlated with Gleason score groups by using the Spearman correlation coefficient (ρ). Coefficient of repeatability and intraclass correlation coefficient [specifically ICC(3,1)], were calculated to evaluate repeatability of the fitted parameters.

RESULTS

The AUC and ρ values were similar between parameters of monoexponential, kurtosis, and stretched exponential (with the exception of the α parameter) models. The absolute ρ values for ADCm , ADCk , K, and ADCs were in the range from 0.31 to 0.53 (P < 0.01). Parameters of the biexponential model demonstrated low repeatability.

CONCLUSION

In region-of-interest based analysis, the monoexponential model for DWI of PCa using b values up to 2000 s/mm(2) was sufficient for PCa detection and characterization.

摘要

目的

从前列腺癌(PCa)的检测和特征描述方面评估四种用于前列腺癌扩散加权成像(DWI)的数学模型。

方法

50例经组织学确诊的PCa患者接受了两次重复的3特斯拉DWI检查,使用12个均匀分布的b值,最高b值为2000 s/mm²。使用单指数、峰度、拉伸指数和双指数模型对感兴趣区域的归一化平均信号强度进行拟合。肿瘤被分为低、中、高Gleason评分组。估计受试者操作特征曲线下面积(AUCs)以评估PCa检测和Gleason评分分类的性能。通过使用Spearman相关系数(ρ)将拟合参数与Gleason评分组进行相关性分析。计算重复性系数和组内相关系数[具体为ICC(3,1)]以评估拟合参数的重复性。

结果

单指数、峰度和拉伸指数模型(α参数除外)的参数之间的AUC和ρ值相似。ADCm、ADCk、K和ADCs的绝对ρ值范围为0.31至0.53(P < 0.01)。双指数模型的参数显示出低重复性。

结论

在基于感兴趣区域的分析中,使用高达2000 s/mm²的b值的PCa DWI单指数模型足以用于PCa的检测和特征描述。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验