Suppr超能文献

利用扩展范围 b 因子扩散加权成像评估前列腺组织特征化的拟合模型。

Evaluation of fitting models for prostate tissue characterization using extended-range b-factor diffusion-weighted imaging.

机构信息

Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden.

Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.

出版信息

Magn Reson Med. 2018 Apr;79(4):2346-2358. doi: 10.1002/mrm.26831. Epub 2017 Jul 17.

Abstract

PURPOSE

To compare the fitting and tissue discrimination performance of biexponential, kurtosis, stretched exponential, and gamma distribution models for high b-factor diffusion-weighted images in prostate cancer.

METHODS

Diffusion-weighted images with 15 b-factors ranging from b = 0 to 3500 s/mm were obtained in 62 prostate cancer patients. Pixel-wise signal decay fits for each model were evaluated with the Akaike Information Criterion (AIC). Parameter values for each model were determined within normal prostate and the index lesion. Their potential to differentiate normal from cancerous tissue was investigated through receiver operating characteristic analysis and comparison with Gleason score.

RESULTS

The biexponential slow diffusion fraction f , the apparent kurtosis diffusion coefficient ADC , and the excess kurtosis factor K differ significantly among normal peripheral zone (PZ), normal transition zone (TZ), tumor PZ, and tumor TZ. Biexponential and gamma distribution models result in the lowest AIC, indicating a superior fit. Maximum areas under the curve (AUCs) of all models ranged from 0.93 to 0.96 for the PZ and from 0.95 to 0.97 for the TZ. Similar AUCs also result from the apparent diffusion coefficient (ADC) of a monoexponential fit to a b-factor sub-range up to 1250 s/mm . For kurtosis and stretched exponential models, single parameters yield the highest AUCs, whereas for the biexponential and gamma distribution models, linear combinations of parameters produce the highest AUCs. Parameters with high AUC show a trend in differentiating low from high Gleason score, whereas parameters with low AUC show no such ability.

CONCLUSION

All models, including a monoexponential fit to a lower-b sub-range, achieve similar AUCs for discrimination of normal and cancer tissue. The biexponential model, which is favored statistically, also appears to provide insight into disease-related microstructural changes. Magn Reson Med 79:2346-2358, 2018. © 2017 International Society for Magnetic Resonance in Medicine.

摘要

目的

比较双指数、峰度、拉伸指数和伽马分布模型在前列腺癌高 b 因子扩散加权图像中的拟合和组织分辨性能。

方法

在 62 例前列腺癌患者中获得了 15 个 b 值(b=0 至 3500 s/mm)的扩散加权图像。通过 Akaike 信息准则(AIC)评估每个模型的像素信号衰减拟合。在正常前列腺和病灶内确定每个模型的参数值。通过接受者操作特征分析并与 Gleason 评分进行比较,研究它们区分正常组织和癌组织的能力。

结果

在正常外周带(PZ)、正常移行带(TZ)、肿瘤 PZ 和肿瘤 TZ 中,双指数慢扩散分数 f 、表观峰度扩散系数 ADC 和超峰度因子 K 差异显著。双指数和伽马分布模型的 AIC 最低,表明拟合效果更好。所有模型在 PZ 的最大曲线下面积(AUC)范围为 0.93 至 0.96,在 TZ 的 AUC 范围为 0.95 至 0.97。对于单指数拟合到 1250 s/mm 以下 b 值的亚范围,表观扩散系数(ADC)也会产生相似的 AUC。对于峰度和拉伸指数模型,单个参数产生最高的 AUC,而对于双指数和伽马分布模型,参数的线性组合产生最高的 AUC。具有高 AUC 的参数显示出区分低 Gleason 评分和高 Gleason 评分的趋势,而 AUC 较低的参数则没有这种能力。

结论

包括对低 b 值子范围进行单指数拟合在内的所有模型在区分正常组织和癌组织方面都能达到相似的 AUC。在统计学上受到青睐的双指数模型似乎也能提供与疾病相关的微观结构变化的见解。磁共振医学 79:2346-2358,2018。© 2017 国际磁共振学会。

相似文献

1
Evaluation of fitting models for prostate tissue characterization using extended-range b-factor diffusion-weighted imaging.
Magn Reson Med. 2018 Apr;79(4):2346-2358. doi: 10.1002/mrm.26831. Epub 2017 Jul 17.
5
Diffusion-weighted imaging of prostate cancer: effect of b-value distribution on repeatability and cancer characterization.
Magn Reson Imaging. 2015 Dec;33(10):1212-1218. doi: 10.1016/j.mri.2015.07.004. Epub 2015 Jul 26.
7
Diagnostic evaluation of diffusion kurtosis imaging for prostate cancer: Detection in a biopsy population.
Eur J Radiol. 2019 Sep;118:138-146. doi: 10.1016/j.ejrad.2019.07.009. Epub 2019 Jul 10.
8
[Discussion of correlation between histogram analysis of quantitative diffusion weighted imaging and Gleason score of prostate cancer].
Zhonghua Yi Xue Za Zhi. 2019 Mar 19;99(11):823-828. doi: 10.3760/cma.j.issn.0376-2491.2019.11.005.

引用本文的文献

3
Diffusion kurtosis imaging and standard diffusion imaging in the magnetic resonance imaging assessment of prostate cancer.
Gland Surg. 2023 Dec 26;12(12):1806-1822. doi: 10.21037/gs-23-53. Epub 2023 Dec 22.
4
Quantitative diffusion MRI in prostate cancer: Image quality, what we can measure and how it improves clinical assessment.
Eur J Radiol. 2023 Oct;167:111066. doi: 10.1016/j.ejrad.2023.111066. Epub 2023 Aug 25.
5
Sub-differentiation of PI-RADS 3 lesions in TZ by advanced diffusion-weighted imaging to aid the biopsy decision process.
Front Oncol. 2023 Feb 10;13:1092073. doi: 10.3389/fonc.2023.1092073. eCollection 2023.
6
Truly reproducible uniform estimation of the ADC with multi-b diffusion data- Application in prostate diffusion imaging.
Magn Reson Med. 2023 Apr;89(4):1586-1600. doi: 10.1002/mrm.29533. Epub 2022 Nov 25.
7
Multi-Site Concordance of Diffusion-Weighted Imaging Quantification for Assessing Prostate Cancer Aggressiveness.
J Magn Reson Imaging. 2022 Jun;55(6):1745-1758. doi: 10.1002/jmri.27983. Epub 2021 Nov 12.
8
Diffusion and quantification of diffusion of prostate cancer.
Br J Radiol. 2022 Mar 1;95(1131):20210653. doi: 10.1259/bjr.20210653. Epub 2021 Sep 19.
10
Optimized bias and signal inference in diffusion-weighted image analysis (OBSIDIAN).
Magn Reson Med. 2021 Nov;86(5):2716-2732. doi: 10.1002/mrm.28773. Epub 2021 Jul 18.

本文引用的文献

1
On the perils of multiexponential fitting of diffusion MR data.
J Magn Reson Imaging. 2017 May;45(5):1545-1547. doi: 10.1002/jmri.25485. Epub 2016 Sep 23.
2
Prostate Cancer Detection Using Computed Very High b-value Diffusion-weighted Imaging: How High Should We Go?
Acad Radiol. 2016 Jun;23(6):704-11. doi: 10.1016/j.acra.2016.02.003. Epub 2016 Mar 15.
3
Multiparametric prostate magnetic resonance imaging in the evaluation of prostate cancer.
CA Cancer J Clin. 2016 Jul;66(4):326-36. doi: 10.3322/caac.21333. Epub 2015 Nov 23.
4
PI-RADS Prostate Imaging - Reporting and Data System: 2015, Version 2.
Eur Urol. 2016 Jan;69(1):16-40. doi: 10.1016/j.eururo.2015.08.052. Epub 2015 Oct 1.
5
Triexponential function analysis of diffusion-weighted MRI for diagnosing prostate cancer.
J Magn Reson Imaging. 2016 Jan;43(1):138-48. doi: 10.1002/jmri.24974. Epub 2015 Jun 27.
6
Comparison of stretched-Exponential and monoexponential model diffusion-Weighted imaging in prostate cancer and normal tissues.
J Magn Reson Imaging. 2015 Oct;42(4):1078-85. doi: 10.1002/jmri.24872. Epub 2015 Feb 26.
9
Interpretation of diffusion MR imaging data using a gamma distribution model.
Magn Reson Med Sci. 2014;13(3):191-5. doi: 10.2463/mrms.2014-0016. Epub 2014 Aug 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验