Suppr超能文献

从多幅彩色图像中自动恢复植物茎的三维模型。

Automated recovery of three-dimensional models of plant shoots from multiple color images.

作者信息

Pound Michael P, French Andrew P, Murchie Erik H, Pridmore Tony P

机构信息

Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom (M.P.P., A.P.F., E.H.M., T.P.P.); andSchool of Computer Science, University of Nottingham, Jubilee Campus, Nottingham NG8 1BB, United Kingdom (A.P.F., T.P.P.).

Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom (M.P.P., A.P.F., E.H.M., T.P.P.); andSchool of Computer Science, University of Nottingham, Jubilee Campus, Nottingham NG8 1BB, United Kingdom (A.P.F., T.P.P.)

出版信息

Plant Physiol. 2014 Dec;166(4):1688-98. doi: 10.1104/pp.114.248971. Epub 2014 Oct 20.

Abstract

Increased adoption of the systems approach to biological research has focused attention on the use of quantitative models of biological objects. This includes a need for realistic three-dimensional (3D) representations of plant shoots for quantification and modeling. Previous limitations in single-view or multiple-view stereo algorithms have led to a reliance on volumetric methods or expensive hardware to record plant structure. We present a fully automatic approach to image-based 3D plant reconstruction that can be achieved using a single low-cost camera. The reconstructed plants are represented as a series of small planar sections that together model the more complex architecture of the leaf surfaces. The boundary of each leaf patch is refined using the level-set method, optimizing the model based on image information, curvature constraints, and the position of neighboring surfaces. The reconstruction process makes few assumptions about the nature of the plant material being reconstructed and, as such, is applicable to a wide variety of plant species and topologies and can be extended to canopy-scale imaging. We demonstrate the effectiveness of our approach on data sets of wheat (Triticum aestivum) and rice (Oryza sativa) plants as well as a unique virtual data set that allows us to compute quantitative measures of reconstruction accuracy. The output is a 3D mesh structure that is suitable for modeling applications in a format that can be imported in the majority of 3D graphics and software packages.

摘要

生物学研究中系统方法的更多采用,使人们将注意力集中在生物对象定量模型的使用上。这包括需要对植物枝条进行逼真的三维(3D)表示,以便进行量化和建模。单视图或多视图立体算法以前的局限性导致人们依赖体积法或昂贵的硬件来记录植物结构。我们提出了一种基于图像的3D植物重建的全自动方法,该方法可以使用单个低成本相机实现。重建的植物表示为一系列小的平面截面,这些截面共同对叶表面更复杂的结构进行建模。使用水平集方法细化每个叶片补丁的边界,根据图像信息、曲率约束和相邻表面的位置优化模型。重建过程对被重建植物材料的性质几乎没有假设,因此适用于多种植物物种和拓扑结构,并且可以扩展到冠层尺度成像。我们在小麦(Triticum aestivum)和水稻(Oryza sativa)植物的数据集以及一个独特的虚拟数据集上证明了我们方法的有效性,该虚拟数据集使我们能够计算重建精度的定量指标。输出是一个3D网格结构,适合以一种可以导入大多数3D图形和软件包的格式进行建模应用。

相似文献

1
Automated recovery of three-dimensional models of plant shoots from multiple color images.
Plant Physiol. 2014 Dec;166(4):1688-98. doi: 10.1104/pp.114.248971. Epub 2014 Oct 20.
3
Plant Phenotyping: An Active Vision Cell for Three-Dimensional Plant Shoot Reconstruction.
Plant Physiol. 2018 Oct;178(2):524-534. doi: 10.1104/pp.18.00664. Epub 2018 Aug 10.
5
Dynamic quantification of canopy structure to characterize early plant vigour in wheat genotypes.
J Exp Bot. 2016 Aug;67(15):4523-34. doi: 10.1093/jxb/erw227. Epub 2016 Jun 15.
6
A technique system for the measurement, reconstruction and character extraction of rice plant architecture.
PLoS One. 2017 May 30;12(5):e0177205. doi: 10.1371/journal.pone.0177205. eCollection 2017.
8
A novel mesh processing based technique for 3D plant analysis.
BMC Plant Biol. 2012 May 3;12:63. doi: 10.1186/1471-2229-12-63.
9
Structured Light-Based 3D Reconstruction System for Plants.
Sensors (Basel). 2015 Jul 29;15(8):18587-612. doi: 10.3390/s150818587.
10
Three-dimensional modeling of tea-shoots using images and models.
Sensors (Basel). 2011;11(4):3803-15. doi: 10.3390/s110403803. Epub 2011 Mar 29.

引用本文的文献

2
A cotton organ segmentation method with phenotypic measurements from a point cloud using a transformer.
Plant Methods. 2025 Mar 16;21(1):37. doi: 10.1186/s13007-025-01357-w.
3
4
A Pathway to Assess Genetic Variation of Wheat Germplasm by Multidimensional Traits with Digital Images.
Plant Phenomics. 2023 Nov 22;5:0119. doi: 10.34133/plantphenomics.0119. eCollection 2023.
7
A fast phenotype approach of 3D point clouds of Pinus massoniana seedlings.
Front Plant Sci. 2023 Jun 26;14:1146490. doi: 10.3389/fpls.2023.1146490. eCollection 2023.
9
All-around 3D plant modeling system using multiple images and its composition.
Breed Sci. 2022 Mar;72(1):75-84. doi: 10.1270/jsbbs.21068. Epub 2022 Feb 2.
10
Model-based plant phenomics on morphological traits using morphometric descriptors.
Breed Sci. 2022 Mar;72(1):19-30. doi: 10.1270/jsbbs.21078. Epub 2022 Feb 17.

本文引用的文献

2
Achieving yield gains in wheat.
Plant Cell Environ. 2012 Oct;35(10):1799-823. doi: 10.1111/j.1365-3040.2012.02588.x. Epub 2012 Aug 20.
3
The photoprotective protein PsbS exerts control over CO(2) assimilation rate in fluctuating light in rice.
Plant J. 2012 Aug;71(3):402-12. doi: 10.1111/j.1365-313X.2012.04995.x. Epub 2012 Jun 5.
4
Three-dimensional root phenotyping with a novel imaging and software platform.
Plant Physiol. 2011 Jun;156(2):455-65. doi: 10.1104/pp.110.169102. Epub 2011 Mar 31.
5
Phenomics: the next challenge.
Nat Rev Genet. 2010 Dec;11(12):855-66. doi: 10.1038/nrg2897.
6
Accurate, dense, and robust multiview stereopsis.
IEEE Trans Pattern Anal Mach Intell. 2010 Aug;32(8):1362-76. doi: 10.1109/TPAMI.2009.161.
7
Agriculture and the new challenges for photosynthesis research.
New Phytol. 2009;181(3):532-52. doi: 10.1111/j.1469-8137.2008.02705.x. Epub 2008 Dec 18.
8
Can improvement in photosynthesis increase crop yields?
Plant Cell Environ. 2006 Mar;29(3):315-30. doi: 10.1111/j.1365-3040.2005.01493.x.
9
3D lidar imaging for detecting and understanding plant responses and canopy structure.
J Exp Bot. 2007;58(4):881-98. doi: 10.1093/jxb/erl142. Epub 2006 Oct 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验