Suppr超能文献

运用计算方法理解恶性疟原虫细胞色素b突变Y268S对阿托伐醌产生耐药性的机制。

Understanding the mechanism of atovaquone drug resistance in Plasmodium falciparum cytochrome b mutation Y268S using computational methods.

作者信息

Akhoon Bashir A, Singh Krishna P, Varshney Megha, Gupta Shishir K, Shukla Yogeshwar, Gupta Shailendra K

机构信息

Department of Bioinformatics, Systems Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India.

Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India.

出版信息

PLoS One. 2014 Oct 15;9(10):e110041. doi: 10.1371/journal.pone.0110041. eCollection 2014.

Abstract

The rapid appearance of resistant malarial parasites after introduction of atovaquone (ATQ) drug has prompted the search for new drugs as even single point mutations in the active site of Cytochrome b protein can rapidly render ATQ ineffective. The presence of Y268 mutations in the Cytochrome b (Cyt b) protein is previously suggested to be responsible for the ATQ resistance in Plasmodium falciparum (P. falciparum). In this study, we examined the resistance mechanism against ATQ in P. falciparum through computational methods. Here, we reported a reliable protein model of Cyt bc1 complex containing Cyt b and the Iron-Sulphur Protein (ISP) of P. falciparum using composite modeling method by combining threading, ab initio modeling and atomic-level structure refinement approaches. The molecular dynamics simulations suggest that Y268S mutation causes ATQ resistance by reducing hydrophobic interactions between Cyt bc1 protein complex and ATQ. Moreover, the important histidine contact of ATQ with the ISP chain is also lost due to Y268S mutation. We noticed the induced mutation alters the arrangement of active site residues in a fashion that enforces ATQ to find its new stable binding site far away from the wild-type binding pocket. The MM-PBSA calculations also shows that the binding affinity of ATQ with Cyt bc1 complex is enough to hold it at this new site that ultimately leads to the ATQ resistance.

摘要

引入阿托伐醌(ATQ)药物后,耐药疟原虫迅速出现,这促使人们寻找新药,因为细胞色素b蛋白活性位点的单点突变都能迅速使ATQ失效。此前有研究表明,细胞色素b(Cyt b)蛋白中Y268突变的存在是恶性疟原虫(P. falciparum)对ATQ耐药的原因。在本研究中,我们通过计算方法研究了恶性疟原虫对ATQ的耐药机制。在此,我们通过结合穿线法、从头建模和原子水平结构优化方法,使用复合建模方法报道了包含恶性疟原虫Cyt b和铁硫蛋白(ISP)的Cyt bc1复合物的可靠蛋白质模型。分子动力学模拟表明,Y268S突变通过减少Cyt bc1蛋白复合物与ATQ之间的疏水相互作用导致ATQ耐药。此外,由于Y268S突变,ATQ与ISP链的重要组氨酸接触也丧失了。我们注意到,诱导突变改变了活性位点残基的排列方式,迫使ATQ找到远离野生型结合口袋的新稳定结合位点。MM-PBSA计算还表明,ATQ与Cyt bc1复合物的结合亲和力足以使其保持在这个新位点,最终导致ATQ耐药。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82a3/4198183/ba5d1aefa4d1/pone.0110041.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验