Suppr超能文献

相似文献

1
Seeing the forest through the trees: uncovering phenomic complexity through interactive network visualization.
J Am Med Inform Assoc. 2015 Mar;22(2):324-9. doi: 10.1136/amiajnl-2014-002965. Epub 2014 Oct 21.
2
Innovative information visualization of electronic health record data: a systematic review.
J Am Med Inform Assoc. 2015 Mar;22(2):330-9. doi: 10.1136/amiajnl-2014-002955. Epub 2014 Oct 21.
3
Visualization of temporal patterns in patient record data.
Fundam Clin Pharmacol. 2018 Feb;32(1):85-87. doi: 10.1111/fcp.12322. Epub 2017 Oct 17.
4
Visualization methods for data analysis and planning in medical applications.
Int J Med Inform. 2002 Dec 18;68(1-3):141-53. doi: 10.1016/s1386-5056(02)00072-2.
6
Understanding variations in pediatric asthma care processes in the emergency department using visual analytics.
J Am Med Inform Assoc. 2015 Mar;22(2):318-23. doi: 10.1093/jamia/ocu016. Epub 2015 Feb 5.
7
Visual analytics in healthcare--opportunities and research challenges.
J Am Med Inform Assoc. 2015 Mar;22(2):260-2. doi: 10.1093/jamia/ocv006.
9
Comparing 2D vector field visualization methods: a user study.
IEEE Trans Vis Comput Graph. 2005 Jan-Feb;11(1):59-70. doi: 10.1109/TVCG.2005.4.
10
MarVis: a tool for clustering and visualization of metabolic biomarkers.
BMC Bioinformatics. 2009 Mar 20;10:92. doi: 10.1186/1471-2105-10-92.

引用本文的文献

2
Recommendations for patient similarity classes: results of the AMIA 2019 workshop on defining patient similarity.
J Am Med Inform Assoc. 2020 Nov 1;27(11):1808-1812. doi: 10.1093/jamia/ocaa159.
3
Sensitivity of comorbidity network analysis.
JAMIA Open. 2019 Dec 31;3(1):94-103. doi: 10.1093/jamiaopen/ooz067. eCollection 2020 Apr.
4
Preparing next-generation scientists for biomedical big data: artificial intelligence approaches.
Per Med. 2019 May 1;16(3):247-257. doi: 10.2217/pme-2018-0145. Epub 2019 Feb 14.
6
Clinical Informatics Researcher's Desiderata for the Data Content of the Next Generation Electronic Health Record.
Appl Clin Inform. 2017 Oct;8(4):1159-1172. doi: 10.4338/ACI-2017-06-R-0101. Epub 2017 Dec 21.
7
Applications of network analysis to routinely collected health care data: a systematic review.
J Am Med Inform Assoc. 2018 Feb 1;25(2):210-221. doi: 10.1093/jamia/ocx052.

本文引用的文献

1
R PheWAS: data analysis and plotting tools for phenome-wide association studies in the R environment.
Bioinformatics. 2014 Aug 15;30(16):2375-6. doi: 10.1093/bioinformatics/btu197. Epub 2014 Apr 14.
2
Secondary use of clinical data: the Vanderbilt approach.
J Biomed Inform. 2014 Dec;52:28-35. doi: 10.1016/j.jbi.2014.02.003. Epub 2014 Feb 14.
4
The challenges, advantages and future of phenome-wide association studies.
Immunology. 2014 Feb;141(2):157-65. doi: 10.1111/imm.12195.
6
Temporal phenome analysis of a large electronic health record cohort enables identification of hospital-acquired complications.
J Am Med Inform Assoc. 2013 Dec;20(e2):e281-7. doi: 10.1136/amiajnl-2013-001861. Epub 2013 Aug 1.
8
Apps to display patient data, making SMART available in the i2b2 platform.
AMIA Annu Symp Proc. 2012;2012:960-9. Epub 2012 Nov 3.
9
Next-generation phenotyping of electronic health records.
J Am Med Inform Assoc. 2013 Jan 1;20(1):117-21. doi: 10.1136/amiajnl-2012-001145. Epub 2012 Sep 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验