Uesaka Naofumi, Uchigashima Motokazu, Mikuni Takayasu, Hirai Hirokazu, Watanabe Masahiko, Kano Masanobu
Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
Cerebellum. 2015 Feb;14(1):4-7. doi: 10.1007/s12311-014-0615-y.
Neurons form exuberant synapses with target cells early in development. Then, necessary synapses are selectively strengthened whereas unnecessary connections are weakened and eventually eliminated during postnatal development. This process is known as synapse elimination and is a crucial step for shaping immature neural circuits into functionally mature versions. Accumulating evidence suggests that retrograde signaling from postsynaptic cells regulates synapse elimination, but the underlying mechanisms remain unknown. Here, we show that semaphorin3A (Sema3A) and semaphorin7A (Sema7A) mediate retrograde signals for elimination of redundant climbing fiber (CF) to Purkinje cell (PC) synapses in the developing cerebellum, a representative model of synapse elimination in the central nervous system. We picked up candidate retrograde signaling molecules that are expressed in PCs during the period of CF synapse elimination and the receptors of these candidate molecules that are present in CFs. We then assessed the effects of lentivirus-mediated RNAi-knockdown of these molecules on CF synapse elimination. By this systematic screening, we found that knockdown of Sema3A in PCs or its co-receptor, plexinA4 (PlxnA4), in CFs accelerated CF synapse elimination and decreased CF-mediated synaptic inputs. Conversely, knockdown of Sema7A in PCs or either of the two receptors for Sema7A, plexinC1 (PlxnC1) and integrinB1 (ItgB1), in CFs impaired CF synapse elimination. Importantly, the effect of Sema7A involves signaling by type 1 metabotropic glutamate receptor (mGluR1), a canonical pathway in PCs for the final stage of CF synapse elimination. These results demonstrate that specific semaphorins act as retrograde signaling molecules and regulate distinct processes of CF synapse elimination during postnatal cerebellar development.
在发育早期,神经元与靶细胞形成大量突触。随后,必要的突触被选择性增强,而不必要的连接在出生后发育过程中被削弱并最终消除。这个过程被称为突触消除,是将未成熟神经回路塑造成功能成熟版本的关键步骤。越来越多的证据表明,来自突触后细胞的逆行信号调节突触消除,但其潜在机制仍不清楚。在这里,我们表明,信号素3A(Sema3A)和信号素7A(Sema7A)介导逆行信号,以消除发育中小脑(中枢神经系统突触消除的代表性模型)中多余的攀缘纤维(CF)到浦肯野细胞(PC)的突触。我们挑选了在CF突触消除期间在PC中表达的候选逆行信号分子以及这些候选分子在CF中存在的受体。然后,我们评估了慢病毒介导的这些分子的RNA干扰敲低对CF突触消除的影响。通过这种系统筛选,我们发现PC中Sema3A或其共受体CF中的丛状蛋白A4(PlxnA4)的敲低加速了CF突触消除并减少了CF介导的突触输入。相反,PC中Sema7A或CF中Sema7A的两个受体之一丛状蛋白C1(PlxnC1)和整合素β1(ItgB1)的敲低损害了CF突触消除。重要的是,Sema7A的作用涉及1型代谢型谷氨酸受体(mGluR1)的信号传导,这是PC中CF突触消除最后阶段的经典途径。这些结果表明,特定的信号素作为逆行信号分子,并在出生后小脑发育过程中调节CF突触消除的不同过程。