Suppr超能文献

统一遗传稳态、遗传限制和基因型与环境互作:窄叶博伊氏草开花时间的基因组背景与环境互作的数量性状位点分析

Unifying genetic canalization, genetic constraint, and genotype-by-environment interaction: QTL by genomic background by environment interaction of flowering time in Boechera stricta.

作者信息

Lee Cheng-Ruei, Anderson Jill T, Mitchell-Olds Thomas

机构信息

Department of Biology, Duke University, Durham, North Carolina, United States of America.

Department of Biological Sciences, Environment and Sustainability Program, University of South Carolina, Columbia, South Carolina, United States of America.

出版信息

PLoS Genet. 2014 Oct 23;10(10):e1004727. doi: 10.1371/journal.pgen.1004727. eCollection 2014 Oct.

Abstract

Natural populations exhibit substantial variation in quantitative traits. A quantitative trait is typically defined by its mean and variance, and to date most genetic mapping studies focus on loci altering trait means but not (co)variances. For single traits, the control of trait variance across genetic backgrounds is referred to as genetic canalization. With multiple traits, the genetic covariance among different traits in the same environment indicates the magnitude of potential genetic constraint, while genotype-by-environment interaction (GxE) concerns the same trait across different environments. While some have suggested that these three attributes of quantitative traits are different views of similar concepts, it is not yet clear, however, whether they have the same underlying genetic mechanism. Here, we detect quantitative trait loci (QTL) influencing the (co)variance of phenological traits in six distinct environments in Boechera stricta, a close relative of Arabidopsis. We identified nFT as the QTL altering the magnitude of phenological trait canalization, genetic constraint, and GxE. Both the magnitude and direction of nFT's canalization effects depend on the environment, and to our knowledge, this reversibility of canalization across environments has not been reported previously. nFT's effects on trait covariance structure (genetic constraint and GxE) likely result from the variable and reversible canalization effects across different traits and environments, which can be explained by the interaction among nFT, genomic backgrounds, and environmental stimuli. This view is supported by experiments demonstrating significant nFT by genomic background epistatic interactions affecting phenological traits and expression of the candidate gene, FT. In contrast to the well-known canalization gene Hsp90, the case of nFT may exemplify an alternative mechanism: Our results suggest that (at least in traits with major signal integrators such as flowering time) genetic canalization, genetic constraint, and GxE may have related genetic mechanisms resulting from interactions among major QTL, genomic backgrounds, and environments.

摘要

自然种群在数量性状上表现出显著差异。数量性状通常由其均值和方差定义,迄今为止,大多数基因定位研究都集中在改变性状均值而非(协)方差的基因座上。对于单一性状,跨遗传背景控制性状方差被称为遗传稳态。对于多个性状,同一环境中不同性状之间的遗传协方差表明了潜在遗传限制的程度,而基因型与环境互作(GxE)则涉及不同环境下的同一性状。虽然有人认为数量性状的这三个属性是相似概念的不同视角,但目前尚不清楚它们是否具有相同的潜在遗传机制。在这里,我们在拟南芥的近缘种——窄叶雾冰草的六个不同环境中检测了影响物候性状(协)方差的数量性状基因座(QTL)。我们确定nFT是改变物候性状稳态、遗传限制和GxE程度的QTL。nFT的稳态效应的程度和方向都取决于环境,据我们所知,这种跨环境的稳态可逆性此前尚未见报道。nFT对性状协方差结构(遗传限制和GxE)的影响可能源于不同性状和环境间可变且可逆的稳态效应,这可以通过nFT、基因组背景和环境刺激之间的相互作用来解释。影响物候性状和候选基因FT表达的基因组背景上位性互作实验证明了显著的nFT效应,这一观点得到了该实验的支持。与著名的稳态基因Hsp90不同,nFT的情况可能例证了一种替代机制:我们的结果表明(至少在像开花时间这样具有主要信号整合因子的性状中),遗传稳态、遗传限制和GxE可能具有由主要QTL、基因组背景和环境之间的相互作用产生的相关遗传机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/85d7/4207664/526da12ba9a1/pgen.1004727.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验