Suppr超能文献

用于模拟全尺度点状神经元微电路的现实形态解剖连接策略。

A realistic morpho-anatomical connection strategy for modelling full-scale point-neuron microcircuits.

机构信息

Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.

Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125, Modena, Italy.

出版信息

Sci Rep. 2022 Aug 16;12(1):13864. doi: 10.1038/s41598-022-18024-y.

Abstract

The modeling of extended microcircuits is emerging as an effective tool to simulate the neurophysiological correlates of brain activity and to investigate brain dysfunctions. However, for specific networks, a realistic modeling approach based on the combination of available physiological, morphological and anatomical data is still an open issue. One of the main problems in the generation of realistic networks lies in the strategy adopted to build network connectivity. Here we propose a method to implement a neuronal network at single cell resolution by using the geometrical probability volumes associated with pre- and postsynaptic neurites. This allows us to build a network with plausible connectivity properties without the explicit use of computationally intensive touch detection algorithms using full 3D neuron reconstructions. The method has been benchmarked for the mouse hippocampus CA1 area, and the results show that this approach is able to generate full-scale brain networks at single cell resolution that are in good agreement with experimental findings. This geometric reconstruction of axonal and dendritic occupancy, by effectively reflecting morphological and anatomical constraints, could be integrated into structured simulators generating entire circuits of different brain areas facilitating the simulation of different brain regions with realistic models.

摘要

扩展微电路的建模正在成为一种有效的工具,可以模拟大脑活动的神经生理相关性,并研究大脑功能障碍。然而,对于特定的网络,基于现有生理、形态和解剖学数据的组合的现实建模方法仍然是一个悬而未决的问题。在生成现实网络时的一个主要问题在于所采用的建立网络连接的策略。在这里,我们提出了一种使用与突触前和突触后神经突相关的几何概率体积来实现单细胞分辨率神经元网络的方法。这使得我们能够构建具有合理连接属性的网络,而无需使用全 3D 神经元重建的计算密集型触摸检测算法。该方法已经在小鼠海马 CA1 区进行了基准测试,结果表明,该方法能够以单细胞分辨率生成全规模的大脑网络,并且与实验结果非常吻合。这种对轴突和树突占据的几何重建,通过有效地反映形态和解剖学约束,可以集成到生成不同脑区整个电路的结构化模拟器中,从而促进使用现实模型对不同脑区进行模拟。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c07/9381785/1526bbd31a58/41598_2022_18024_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验