Goethe Center for Scientific Computing, Goethe University Frankfurt, Kettenhofweg 139, 60325, Frankfurt, Germany.
Neuroinformatics. 2013 Apr;11(2):137-48. doi: 10.1007/s12021-012-9170-1.
Detailed cell and network morphologies are becoming increasingly important in Computational Neuroscience. Great efforts have been undertaken to systematically record and store the anatomical data of cells. This effort is visible in databases, such as NeuroMorpho.org. In order to make use of these fast growing data within computational models of networks, it is vital to include detailed data of morphologies when generating those cell and network geometries. For this purpose we developed the Neuron Network Generator NeuGen 2.0, that is designed to include known and published anatomical data of cells and to automatically generate large networks of neurons. It offers export functionality to classic simulators, such as the NEURON Simulator by Hines and Carnevale (2003). NeuGen 2.0 is designed in a modular way, so any new and available data can be included into NeuGen 2.0. Also, new brain areas and cell types can be defined with the possibility of constructing user-defined cell types and networks. Therefore, NeuGen 2.0 is a software package that grows with each new piece of anatomical data, which subsequently will continue to increase the morphological detail of automatically generated networks. In this paper we introduce NeuGen 2.0 and apply its functionalities to the CA1 hippocampus. Runtime and memory benchmarks show that NeuGen 2.0 is applicable to generating very large networks, with high morphological detail.
在计算神经科学中,详细的细胞和网络形态变得越来越重要。人们已经付出了巨大的努力来系统地记录和存储细胞的解剖学数据。这一努力在数据库中可见,如 NeuroMorpho.org。为了在网络的计算模型中利用这些快速增长的数据,在生成这些细胞和网络几何形状时,包含详细的形态数据是至关重要的。为此,我们开发了神经元网络生成器 NeuGen 2.0,旨在包括已知和已发表的细胞解剖学数据,并自动生成大量神经元网络。它提供了向经典模拟器(如 Hines 和 Carnevale(2003 年)的 NEURON 模拟器)的导出功能。NeuGen 2.0 以模块化的方式设计,因此可以将任何新的可用数据包含到 NeuGen 2.0 中。此外,还可以定义新的脑区和细胞类型,并可以构建用户定义的细胞类型和网络。因此,NeuGen 2.0 是一个随着每一个新的解剖学数据的增加而不断发展的软件包,这些数据随后将继续增加自动生成网络的形态细节。在本文中,我们介绍了 NeuGen 2.0,并将其功能应用于 CA1 海马体。运行时和内存基准测试表明,NeuGen 2.0 适用于生成具有高形态细节的非常大的网络。