Savanthrapadian Shakuntala, Meyer Thomas, Elgueta Claudio, Booker Sam A, Vida Imre, Bartos Marlene
Physiologisches Institut I, Systemic and Cellular Neuroscience, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany, and.
Institute for Integrative Neuroanatomy and NeuroCure Cluster, Charité Berlin, 10115 Berlin, Germany.
J Neurosci. 2014 Jun 11;34(24):8197-209. doi: 10.1523/JNEUROSCI.5433-13.2014.
Hippocampal GABAergic cells are highly heterogeneous, but the functional significance of this diversity is not fully understood. By using paired recordings of synaptically connected interneurons in slice preparations of the rat and mouse dentate gyrus (DG), we show that morphologically identified interneurons form complex neuronal networks. Synaptic inhibitory interactions exist between cholecystokinin (CCK)-expressing hilar commissural associational path (HICAP) cells and among somatostatin (SOM)-containing hilar perforant path-associated (HIPP) interneurons. Moreover, both interneuron types inhibit parvalbumin (PV)-expressing perisomatic inhibitory basket cells (BCs), whereas BCs and HICAPs rarely target HIPP cells. HICAP and HIPP cells produce slow, weak, and unreliable inhibition onto postsynaptic interneurons. The time course of inhibitory signaling is defined by the identity of the presynaptic and postsynaptic cell. It is the slowest for HIPP-HIPP, intermediately slow for HICAP-HICAP, but fast for BC-BC synapses. GABA release at interneuron-interneuron synapses also shows cell type-specific short-term dynamics, ranging from multiple-pulse facilitation at HICAP-HICAP, biphasic modulation at HIPP-HIPP to depression at BC-BC synapses. Although dendritic inhibition at HICAP-BC and HIPP-BC synapses appears weak and slow, channelrhodopsin 2-mediated excitation of SOM terminals demonstrates that they effectively control the activity of target interneurons. They markedly reduce the discharge probability but sharpen the temporal precision of action potential generation. Thus, dendritic inhibition seems to play an important role in determining the activity pattern of GABAergic interneuron populations and thereby the flow of information through the DG circuitry.
海马体中的γ-氨基丁酸(GABA)能细胞具有高度异质性,但其多样性的功能意义尚未完全明确。通过对大鼠和小鼠齿状回(DG)脑片制备中突触连接的中间神经元进行配对记录,我们发现形态学上可识别的中间神经元形成了复杂的神经网络。表达胆囊收缩素(CCK)的海马连合联合通路(HICAP)细胞之间以及含有生长抑素(SOM)的海马穿通通路相关(HIPP)中间神经元之间存在突触抑制性相互作用。此外,这两种中间神经元类型均抑制表达小白蛋白(PV)的体细胞周围抑制性篮状细胞(BCs),而BCs和HICAPs很少靶向HIPP细胞。HICAP和HIPP细胞对突触后中间神经元产生缓慢、微弱且不可靠的抑制作用。抑制性信号传导的时间进程由突触前和突触后细胞的类型决定。HIPP-HIPP之间的抑制最慢,HICAP-HICAP之间的抑制中等,而BC-BC突触的抑制最快。中间神经元-中间神经元突触处的GABA释放也表现出细胞类型特异性的短期动态变化,从HICAP-HICAP处的多脉冲易化,到HIPP-HIPP处的双相调制,再到BC-BC突触处的抑制。尽管HICAP-BC和HIPP-BC突触处的树突抑制似乎微弱且缓慢,但通过通道视紫红质2介导的SOM终末的兴奋表明,它们有效地控制了靶中间神经元的活动。它们显著降低了放电概率,但提高了动作电位产生的时间精度。因此,树突抑制似乎在决定GABA能中间神经元群体的活动模式以及由此决定通过DG回路的信息流方面发挥着重要作用。