INRA, UMR 1208 Ingénierie des Agropolymères et Technologies Emergentes 2, Place Pierre Viala, 34060 Montpellier, cedex 1 France.
Biotechnol Biofuels. 2014 Sep 24;7(1):138. doi: 10.1186/s13068-014-0138-2. eCollection 2014.
Today, most of pretreatments used to convert biomass into biofuels are based on expensive chemical processes that not only do not keep the major components intact after separation, but also consume water and generate many effluents. However, dry fractionation technologies are an important step for future biomass biorefineries since they do not require chemicals and do not generate wastewater. Therefore, the aim of the present study was to evaluate the feasibility of using milling combined with an electrostatic fractionation (ES) of wheat straw (WS) as a way to separate fractions that are enriched in cellulose and more enzymatically accessible, from recalcitrant tissues enriched in lignin-hemicelluloses, in order to produce biofuels.
After milling, WS particles are introduced into a tribo-electrostatic separator, where they are positively or negatively charged by tribo-electricity. Then they are introduced into a separation cell comprising two electrodes (+ and -). The negative electrode attracts the positively charged particles and the positive electrode attracts the negatively charged particles. Results show that amorphous cellulose rich particles were clearly more abundant in positively charged fractions (F+), and loose crystalline cellulose, lignin-xylan and ash-containing material were more abundant in negatively charged fractions (F-). Indeed, positively charged fractions (F+) are more accessible upon enzymatic hydrolysis, which resulted, for example, in sugars yield of 43.5% glucose (254 gKg(-1)) for F2B + compared to 25.2% (103 gKg(-1)) for F2A-, and 26.3% (130 gKg(-1)) for unfractionated WS F0, respectively.
The combination strategy of milling and ES fractionation could improve the economic feasibility by low energy consumption (10.5 WhKg(-1)) and it produces reactive lignocelluloses particles with different physicochemical structures, which can be converted easily into biofuels and biomaterials without generating toxic effluents.
如今,大多数将生物质转化为生物燃料的预处理方法都基于昂贵的化学工艺,这些工艺不仅在分离后不能保持主要成分的完整性,而且还消耗水并产生许多废水。然而,干法分馏技术是未来生物质生物炼制厂的重要一步,因为它们不需要使用化学品,也不会产生废水。因此,本研究的目的是评估使用磨碎结合静电分离(ES)小麦秸秆(WS)作为一种分离富含纤维素和更易于酶解的纤维素的方法的可行性,以及从富含木质素-半纤维素的抗性组织中分离出来,以便生产生物燃料。
磨碎后,WS 颗粒被引入摩擦静电分离器中,在那里它们通过摩擦起电而带正电或负电。然后将它们引入包含两个电极(+和-)的分离室中。负电极吸引带正电的颗粒,正电极吸引带负电的颗粒。结果表明,无定形纤维素丰富的颗粒在带正电的部分(F+)中明显更丰富,而松散的结晶纤维素、木质素-木聚糖和含灰物质在带负电的部分(F-)中更丰富。事实上,带正电的部分(F+)在酶水解时更容易接近,例如,对于 F2B+,糖的产率为 43.5%(254 gKg-1)葡萄糖,而对于 F2A-,糖的产率为 25.2%(103 gKg-1),对于未分级的 WS F0,糖的产率为 26.3%(130 gKg-1)。
磨碎和 ES 分级的组合策略可以通过低能耗(10.5 WhKg-1)提高经济可行性,并且产生具有不同物理化学结构的反应性木质纤维素颗粒,这些颗粒可以很容易地转化为生物燃料和生物材料,而不会产生有毒废水。