Frickmann Hagen, Masanta Wycliffe Omurwa, Zautner Andreas E
Fachbereich Tropenmedizin am Bernhard-Nocht-Institut, Bundeswehrkrankenhaus Hamburg, 20359 Hamburg, Germany ; Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsmedizin Rostock, 18057 Rostock, Germany.
UMG-Labor, Abteilung Klinische Chemie/Zentrallabor, Universitätsmedizin Göttingen, 37075 Göttingen, Germany ; Institut für Medizinische Mikrobiologie, Universitätsmedizin Göttingen, Kreuzbergring 57, 37075 Göttingen, Germany.
Biomed Res Int. 2014;2014:375681. doi: 10.1155/2014/375681. Epub 2014 Sep 17.
Atypical and multidrug resistance, especially ESBL and carbapenemase expressing Enterobacteriaceae, is globally spreading. Therefore, it becomes increasingly difficult to achieve therapeutic success by calculated antibiotic therapy. Consequently, rapid antibiotic resistance testing is essential. Various molecular and mass spectrometry-based approaches have been introduced in diagnostic microbiology to speed up the providing of reliable resistance data. PCR- and sequencing-based approaches are the most expensive but the most frequently applied modes of testing, suitable for the detection of resistance genes even from primary material. Next generation sequencing, based either on assessment of allelic single nucleotide polymorphisms or on the detection of nonubiquitous resistance mechanisms might allow for sequence-based bacterial resistance testing comparable to viral resistance testing on the long term. Fluorescence in situ hybridization (FISH), based on specific binding of fluorescence-labeled oligonucleotide probes, provides a less expensive molecular bridging technique. It is particularly useful for detection of resistance mechanisms based on mutations in ribosomal RNA. Approaches based on MALDI-TOF-MS, alone or in combination with molecular techniques, like PCR/electrospray ionization MS or minisequencing provide the fastest resistance results from pure colonies or even primary samples with a growing number of protocols. This review details the various approaches of rapid resistance testing, their pros and cons, and their potential use for the diagnostic laboratory.
非典型和多重耐药性,尤其是产超广谱β-内酰胺酶(ESBL)和碳青霉烯酶的肠杆菌科细菌,正在全球范围内传播。因此,通过精确计算的抗生素治疗取得治疗成功变得越来越困难。因此,快速抗生素耐药性检测至关重要。诊断微生物学中已引入了各种基于分子和质谱的方法,以加快提供可靠的耐药性数据。基于PCR和测序的方法是最昂贵但最常用的检测模式,甚至适用于从原始材料中检测耐药基因。基于等位基因单核苷酸多态性评估或基于检测罕见耐药机制的下一代测序,从长远来看,可能会实现类似于病毒耐药性检测的基于序列的细菌耐药性检测。基于荧光标记寡核苷酸探针特异性结合的荧光原位杂交(FISH)提供了一种成本较低的分子桥接技术。它对于检测基于核糖体RNA突变的耐药机制特别有用。基于基质辅助激光解吸电离飞行时间质谱(MALDI-TOF-MS)的方法,单独或与分子技术(如PCR/电喷雾电离质谱或微测序)结合使用,可从纯菌落甚至原始样本中以越来越多的方案提供最快的耐药性结果。本文综述详细介绍了快速耐药性检测的各种方法、它们的优缺点以及它们在诊断实验室中的潜在用途。