Suppr超能文献

利用信号通路活性模型理解疾病机制。

Understanding disease mechanisms with models of signaling pathway activities.

作者信息

Sebastian-Leon Patricia, Vidal Enrique, Minguez Pablo, Conesa Ana, Tarazona Sonia, Amadoz Alicia, Armero Carmen, Salavert Francisco, Vidal-Puig Antonio, Montaner David, Dopazo Joaquín

机构信息

Department of Computational Genomics, Centro de Investigación Príncipe Felipe (CIPF), Avda. Autopista del Saler, 16, 46012, Valencia, Spain.

BIER, CIBER de Enfermedades Raras (CIBERER), Valencia, 46012, Spain.

出版信息

BMC Syst Biol. 2014 Oct 25;8:121. doi: 10.1186/s12918-014-0121-3.

Abstract

BACKGROUND

Understanding the aspects of the cell functionality that account for disease or drug action mechanisms is one of the main challenges in the analysis of genomic data and is on the basis of the future implementation of precision medicine.

RESULTS

Here we propose a simple probabilistic model in which signaling pathways are separated into elementary sub-pathways or signal transmission circuits (which ultimately trigger cell functions) and then transforms gene expression measurements into probabilities of activation of such signal transmission circuits. Using this model, differential activation of such circuits between biological conditions can be estimated. Thus, circuit activation statuses can be interpreted as biomarkers that discriminate among the compared conditions. This type of mechanism-based biomarkers accounts for cell functional activities and can easily be associated to disease or drug action mechanisms. The accuracy of the proposed model is demonstrated with simulations and real datasets.

CONCLUSIONS

The proposed model provides detailed information that enables the interpretation disease mechanisms as a consequence of the complex combinations of altered gene expression values. Moreover, it offers a framework for suggesting possible ways of therapeutic intervention in a pathologically perturbed system.

摘要

背景

了解导致疾病或药物作用机制的细胞功能方面,是基因组数据分析中的主要挑战之一,也是精准医学未来实施的基础。

结果

在此,我们提出一个简单的概率模型,其中信号通路被分离为基本子通路或信号传输回路(最终触发细胞功能),然后将基因表达测量值转化为这种信号传输回路激活的概率。使用该模型,可以估计生物条件之间此类回路的差异激活。因此,回路激活状态可被解释为区分所比较条件的生物标志物。这种基于机制的生物标志物考虑了细胞功能活动,并且可以很容易地与疾病或药物作用机制相关联。通过模拟和真实数据集证明了所提出模型的准确性。

结论

所提出的模型提供了详细信息,使得能够将疾病机制解释为基因表达值改变的复杂组合的结果。此外,它为在病理扰动系统中建议可能的治疗干预方式提供了一个框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5623/4213475/1e9e24794808/12918_2014_121_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验