Suppr超能文献

一种具有动态增长区域的肿瘤生长高性能细胞自动机模型。

A High-Performance Cellular Automaton Model of Tumor Growth with Dynamically Growing Domains.

作者信息

Poleszczuk Jan, Enderling Heiko

机构信息

College of Inter-faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Warsaw Poland.

Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.

出版信息

Appl Math (Irvine). 2014 Jan;5(1):144-152. doi: 10.4236/am.2014.51017.

Abstract

Tumor growth from a single transformed cancer cell up to a clinically apparent mass spans many spatial and temporal orders of magnitude. Implementation of cellular automata simulations of such tumor growth can be straightforward but computing performance often counterbalances simplicity. Computationally convenient simulation times can be achieved by choosing appropriate data structures, memory and cell handling as well as domain setup. We propose a cellular automaton model of tumor growth with a domain that expands dynamically as the tumor population increases. We discuss memory access, data structures and implementation techniques that yield high-performance multi-scale Monte Carlo simulations of tumor growth. We discuss tumor properties that favor the proposed high-performance design and present simulation results of the tumor growth model. We estimate to which parameters the model is the most sensitive, and show that tumor volume depends on a number of parameters in a non-monotonic manner.

摘要

从单个转化的癌细胞生长到临床上可察觉的肿块,肿瘤生长跨越了许多空间和时间数量级。对这种肿瘤生长进行细胞自动机模拟的实现可以很简单,但计算性能往往会抵消这种简单性。通过选择合适的数据结构、内存和细胞处理方式以及域设置,可以实现计算上方便的模拟时间。我们提出了一种肿瘤生长的细胞自动机模型,其域会随着肿瘤群体的增加而动态扩展。我们讨论了能够实现肿瘤生长的高性能多尺度蒙特卡罗模拟的内存访问、数据结构和实现技术。我们讨论了有利于所提出的高性能设计的肿瘤特性,并展示了肿瘤生长模型的模拟结果。我们估计模型对哪些参数最敏感,并表明肿瘤体积以非单调方式依赖于多个参数。

相似文献

1
A High-Performance Cellular Automaton Model of Tumor Growth with Dynamically Growing Domains.
Appl Math (Irvine). 2014 Jan;5(1):144-152. doi: 10.4236/am.2014.51017.
2
[A logistic cellular automaton for simulating tumor growth].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2003 Mar;20(1):79-82.
3
A scalable solver for a stochastic, hybrid cellular automaton model of personalized breast cancer therapy.
Int J Numer Method Biomed Eng. 2022 Jan;38(1):e3542. doi: 10.1002/cnm.3542. Epub 2021 Nov 14.
4
Dynamic Load Balancing Strategy for Parallel Tumor Growth Simulations.
J Integr Bioinform. 2019 Feb 14;16(1):20180066. doi: 10.1515/jib-2018-0066.
5
Symbolic Computation Using Cellular Automata-Based Hyperdimensional Computing.
Neural Comput. 2015 Dec;27(12):2661-92. doi: 10.1162/NECO_a_00787. Epub 2015 Oct 23.
6
Cellular-automaton model for tumor growth dynamics: Virtualization of different scenarios.
Comput Biol Med. 2023 Feb;153:106481. doi: 10.1016/j.compbiomed.2022.106481. Epub 2022 Dec 28.
8
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
9
Generalized rough and fuzzy rough automata for semantic computing.
Int J Mach Learn Cybern. 2022;13(12):4013-4032. doi: 10.1007/s13042-022-01637-0. Epub 2022 Sep 21.
10

引用本文的文献

1
Calibrating tumor growth and invasion parameters with spectral spatial analysis of cancer biopsy tissues.
NPJ Syst Biol Appl. 2024 Oct 2;10(1):112. doi: 10.1038/s41540-024-00439-0.
2
Inspiring a convergent engineering approach to measure and model the tissue microenvironment.
Heliyon. 2024 Jun 8;10(12):e32546. doi: 10.1016/j.heliyon.2024.e32546. eCollection 2024 Jun 30.
3
A Review of Mathematical and Computational Methods in Cancer Dynamics.
Front Oncol. 2022 Jul 25;12:850731. doi: 10.3389/fonc.2022.850731. eCollection 2022.
4
Selection-driven tumor evolution with public goods leads to patterns of clonal expansion consistent with neutral growth.
iScience. 2020 Dec 7;24(1):101901. doi: 10.1016/j.isci.2020.101901. eCollection 2021 Jan 22.
5
Uncertainty quantification on a spatial Markov-chain model for the progression of skin cancer.
J Math Biol. 2020 Feb;80(3):545-573. doi: 10.1007/s00285-019-01367-y. Epub 2019 Dec 19.
6
Dynamic Load Balancing Strategy for Parallel Tumor Growth Simulations.
J Integr Bioinform. 2019 Feb 14;16(1):20180066. doi: 10.1515/jib-2018-0066.
7
A Review of Cell-Based Computational Modeling in Cancer Biology.
JCO Clin Cancer Inform. 2019 Feb;3:1-13. doi: 10.1200/CCI.18.00069.
8
Sampling from single-cell observations to predict tumor cell growth and .
Oncotarget. 2017 Nov 25;8(67):111176-111189. doi: 10.18632/oncotarget.22693. eCollection 2017 Dec 19.
9
Hybrid multiscale modeling and prediction of cancer cell behavior.
PLoS One. 2017 Aug 28;12(8):e0183810. doi: 10.1371/journal.pone.0183810. eCollection 2017.

本文引用的文献

2
Cancer Stem Cells: A Minor Cancer Subpopulation that Redefines Global Cancer Features.
Front Oncol. 2013 Apr 15;3:76. doi: 10.3389/fonc.2013.00076. eCollection 2013.
3
Acute and fractionated irradiation differentially modulate glioma stem cell division kinetics.
Cancer Res. 2013 Mar 1;73(5):1481-90. doi: 10.1158/0008-5472.CAN-12-3429. Epub 2012 Dec 26.
4
Cancer stem cells and tumor dormancy.
Adv Exp Med Biol. 2013;734:55-71. doi: 10.1007/978-1-4614-1445-2_4.
6
In silico experimental modeling of cancer treatment.
ISRN Oncol. 2012;2012:828701. doi: 10.5402/2012/828701. Epub 2012 Feb 1.
7
Emergent behaviors from a cellular automaton model for invasive tumor growth in heterogeneous microenvironments.
PLoS Comput Biol. 2011 Dec;7(12):e1002314. doi: 10.1371/journal.pcbi.1002314. Epub 2011 Dec 22.
8
Non-stem cancer cell kinetics modulate solid tumor progression.
Theor Biol Med Model. 2011 Dec 30;8:48. doi: 10.1186/1742-4682-8-48.
9
Phenotypic transition maps of 3D breast acini obtained by imaging-guided agent-based modeling.
Integr Biol (Camb). 2011 Apr;3(4):408-21. doi: 10.1039/c0ib00092b. Epub 2011 Mar 4.
10
Cancer stem cell tumor model reveals invasive morphology and increased phenotypical heterogeneity.
Cancer Res. 2010 Jan 1;70(1):46-56. doi: 10.1158/0008-5472.CAN-09-3663.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验