Poleszczuk Jan, Enderling Heiko
College of Inter-faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Warsaw Poland.
Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
Appl Math (Irvine). 2014 Jan;5(1):144-152. doi: 10.4236/am.2014.51017.
Tumor growth from a single transformed cancer cell up to a clinically apparent mass spans many spatial and temporal orders of magnitude. Implementation of cellular automata simulations of such tumor growth can be straightforward but computing performance often counterbalances simplicity. Computationally convenient simulation times can be achieved by choosing appropriate data structures, memory and cell handling as well as domain setup. We propose a cellular automaton model of tumor growth with a domain that expands dynamically as the tumor population increases. We discuss memory access, data structures and implementation techniques that yield high-performance multi-scale Monte Carlo simulations of tumor growth. We discuss tumor properties that favor the proposed high-performance design and present simulation results of the tumor growth model. We estimate to which parameters the model is the most sensitive, and show that tumor volume depends on a number of parameters in a non-monotonic manner.
从单个转化的癌细胞生长到临床上可察觉的肿块,肿瘤生长跨越了许多空间和时间数量级。对这种肿瘤生长进行细胞自动机模拟的实现可以很简单,但计算性能往往会抵消这种简单性。通过选择合适的数据结构、内存和细胞处理方式以及域设置,可以实现计算上方便的模拟时间。我们提出了一种肿瘤生长的细胞自动机模型,其域会随着肿瘤群体的增加而动态扩展。我们讨论了能够实现肿瘤生长的高性能多尺度蒙特卡罗模拟的内存访问、数据结构和实现技术。我们讨论了有利于所提出的高性能设计的肿瘤特性,并展示了肿瘤生长模型的模拟结果。我们估计模型对哪些参数最敏感,并表明肿瘤体积以非单调方式依赖于多个参数。