Suppr超能文献

使用CRISPR-Cas9系统靶向骨肉瘤细胞中的CDK11。

Targeting CDK11 in osteosarcoma cells using the CRISPR-Cas9 system.

作者信息

Feng Yong, Sassi Slim, Shen Jacson K, Yang Xiaoqian, Gao Yan, Osaka Eiji, Zhang Jianming, Yang Shuhua, Yang Cao, Mankin Henry J, Hornicek Francis J, Duan Zhenfeng

机构信息

Department of Orthopaedic Surgery, Sarcoma Biology Laboratory, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, 02114, Boston, Massachusetts; Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jie Fang Avenue, 430022, Wuhan, China.

出版信息

J Orthop Res. 2015 Feb;33(2):199-207. doi: 10.1002/jor.22745. Epub 2014 Oct 27.

Abstract

Osteosarcoma is the most common type primary malignant tumor of bone. Patients with regional osteosarcoma are routinely treated with surgery and chemotherapy. In addition, many patients with metastatic or recurrent osteosarcoma show poor prognosis with current chemotherapy agents. Therefore, it is important to improve the general condition and the overall survival rate of patients with osteosarcoma by identifying novel therapeutic strategies. Recent studies have revealed that CDK11 is essential in osteosarcoma cell growth and survival by inhibiting CDK11 mRNA expression with RNAi. Here, we apply the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9 system, a robust and highly efficient novel genome editing tool, to determine the effect of targeting endogenous CDK11 gene at the DNA level in osteosarcoma cell lines. We show that CDK11 can be efficiently silenced by CRISPR-Cas9. Inhibition of CDK11 is associated with decreased cell proliferation and viability, and induces cell death in osteosarcoma cell lines KHOS and U-2OS. Furthermore, the migration and invasion activities are also markedly reduced by CDK11 knockout. These results demonstrate that CRISPR-Cas9 system is a useful tool for the modification of endogenous CDK11 gene expression, and CRISPR-Cas9 targeted CDK11 knockout may be a promising therapeutic regimen for the treatment of osteosarcoma.

摘要

骨肉瘤是最常见的原发性骨恶性肿瘤类型。局部骨肉瘤患者通常接受手术和化疗。此外,许多转移性或复发性骨肉瘤患者使用目前的化疗药物预后较差。因此,通过确定新的治疗策略来改善骨肉瘤患者的总体状况和总生存率很重要。最近的研究表明,CDK11通过RNAi抑制CDK11 mRNA表达,在骨肉瘤细胞生长和存活中至关重要。在此,我们应用成簇规律间隔短回文重复序列(CRISPR)-Cas9系统,一种强大且高效的新型基因组编辑工具,来确定在骨肉瘤细胞系中在DNA水平靶向内源性CDK11基因的效果。我们表明CRISPR-Cas9可以有效沉默CDK11。CDK11的抑制与骨肉瘤细胞系KHOS和U-2OS中细胞增殖和活力降低相关,并诱导细胞死亡。此外,CDK11基因敲除也显著降低了迁移和侵袭活性。这些结果表明,CRISPR-Cas9系统是用于修饰内源性CDK11基因表达的有用工具,并且CRISPR-Cas9靶向CDK11基因敲除可能是治疗骨肉瘤的一种有前景的治疗方案。

相似文献

1
Targeting CDK11 in osteosarcoma cells using the CRISPR-Cas9 system.
J Orthop Res. 2015 Feb;33(2):199-207. doi: 10.1002/jor.22745. Epub 2014 Oct 27.
3
Tumor cell-targeted delivery of CRISPR/Cas9 by aptamer-functionalized lipopolymer for therapeutic genome editing of VEGFA in osteosarcoma.
Biomaterials. 2017 Dec;147:68-85. doi: 10.1016/j.biomaterials.2017.09.015. Epub 2017 Sep 13.
4
Systematic screening for potential therapeutic targets in osteosarcoma through a kinome-wide CRISPR-Cas9 library.
Cancer Biol Med. 2020 Aug 15;17(3):782-794. doi: 10.20892/j.issn.2095-3941.2020.0162.
5
Transcriptional activation of CBFβ by CDK11 is necessary to promote osteosarcoma cell proliferation.
Cell Commun Signal. 2019 Oct 14;17(1):125. doi: 10.1186/s12964-019-0440-5.
6
Systematic kinome shRNA screening identifies CDK11 (PITSLRE) kinase expression is critical for osteosarcoma cell growth and proliferation.
Clin Cancer Res. 2012 Sep 1;18(17):4580-8. doi: 10.1158/1078-0432.CCR-12-1157. Epub 2012 Jul 12.
7
Targeting programmed cell death ligand 1 by CRISPR/Cas9 in osteosarcoma cells.
Oncotarget. 2017 May 2;8(18):30276-30287. doi: 10.18632/oncotarget.16326.
9
Establishment and application of a human osteosarcoma U-2OS cell line that can stably express Cas9 protein.
Mol Cell Biochem. 2022 Sep;477(9):2183-2191. doi: 10.1007/s11010-022-04434-z. Epub 2022 Apr 20.
10
Applications of CRISPR/Cas9 in the research of malignant musculoskeletal tumors.
BMC Musculoskelet Disord. 2021 Feb 5;22(1):149. doi: 10.1186/s12891-021-04020-2.

引用本文的文献

1
CRISPR/Cas9 technology in tumor research and drug development application progress and future prospects.
Front Pharmacol. 2025 Jul 8;16:1552741. doi: 10.3389/fphar.2025.1552741. eCollection 2025.
4
Rescue of the disease-associated phenotype in CRISPR-corrected hiPSCs as a therapeutic approach for inherited retinal dystrophies.
Mol Ther Nucleic Acids. 2025 Feb 11;36(1):102482. doi: 10.1016/j.omtn.2025.102482. eCollection 2025 Mar 11.
5
Precision oncology revolution: CRISPR-Cas9 and PROTAC technologies unleashed.
Front Genet. 2024 Jul 31;15:1434002. doi: 10.3389/fgene.2024.1434002. eCollection 2024.
6
Roles of Skeletal Muscle in Development: A Bioinformatics and Systems Biology Overview.
Adv Anat Embryol Cell Biol. 2023;236:21-55. doi: 10.1007/978-3-031-38215-4_2.
7
Design of hypoxia responsive CRISPR-Cas9 for target gene regulation.
Sci Rep. 2023 Oct 5;13(1):16763. doi: 10.1038/s41598-023-43711-9.
8
CRISPR-Based Gene Editing: a Modern Approach for Study and Treatment of Cancer.
Appl Biochem Biotechnol. 2024 Jul;196(7):4439-4456. doi: 10.1007/s12010-023-04708-2. Epub 2023 Sep 22.
9
CRISPR/Cas9‑mediated EZH2 knockout suppresses the proliferation and migration of triple‑negative breast cancer cells.
Oncol Lett. 2023 Jun 22;26(2):343. doi: 10.3892/ol.2023.13929. eCollection 2023 Aug.
10
Current Status and Prospects of Clinical Treatment of Osteosarcoma.
Technol Cancer Res Treat. 2022 Jan-Dec;21:15330338221124696. doi: 10.1177/15330338221124696.

本文引用的文献

1
Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing.
Nat Biotechnol. 2014 Jun;32(6):569-76. doi: 10.1038/nbt.2908. Epub 2014 Apr 25.
2
MicroRNA-1 (miR-1) inhibits chordoma cell migration and invasion by targeting slug.
J Orthop Res. 2014 Aug;32(8):1075-82. doi: 10.1002/jor.22632. Epub 2014 Apr 24.
3
CRISPR/Cas9 for genome editing: progress, implications and challenges.
Hum Mol Genet. 2014 Sep 15;23(R1):R40-6. doi: 10.1093/hmg/ddu125. Epub 2014 Mar 20.
4
CRISPR-Cas systems for editing, regulating and targeting genomes.
Nat Biotechnol. 2014 Apr;32(4):347-55. doi: 10.1038/nbt.2842. Epub 2014 Mar 2.
5
A synthetic lethal screen identifies FAT1 as an antagonist of caspase-8 in extrinsic apoptosis.
EMBO J. 2014 Feb 3;33(3):181-97. doi: 10.1002/embj.201385686. Epub 2014 Jan 17.
6
Osteosarcoma treatment - where do we stand? A state of the art review.
Cancer Treat Rev. 2014 May;40(4):523-32. doi: 10.1016/j.ctrv.2013.11.006. Epub 2013 Nov 27.
7
Genome-scale CRISPR-Cas9 knockout screening in human cells.
Science. 2014 Jan 3;343(6166):84-87. doi: 10.1126/science.1247005. Epub 2013 Dec 12.
8
Repurposing CRISPR/Cas9 for in situ functional assays.
Genes Dev. 2013 Dec 1;27(23):2602-14. doi: 10.1101/gad.227132.113.
9
CDK1 stabilizes HIF-1α via direct phosphorylation of Ser668 to promote tumor growth.
Cell Cycle. 2013 Dec 1;12(23):3689-701. doi: 10.4161/cc.26930. Epub 2013 Oct 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验