Suppr超能文献

RNA-DNA杂交体的全基因组分布确定了tRNA基因、逆转录转座子和线粒体中的核糖核酸酶H作用靶点。

Genome-wide distribution of RNA-DNA hybrids identifies RNase H targets in tRNA genes, retrotransposons and mitochondria.

作者信息

El Hage Aziz, Webb Shaun, Kerr Alastair, Tollervey David

机构信息

Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom.

出版信息

PLoS Genet. 2014 Oct 30;10(10):e1004716. doi: 10.1371/journal.pgen.1004716. eCollection 2014 Oct.

Abstract

During transcription, the nascent RNA can invade the DNA template, forming extended RNA-DNA duplexes (R-loops). Here we employ ChIP-seq in strains expressing or lacking RNase H to map targets of RNase H activity throughout the budding yeast genome. In wild-type strains, R-loops were readily detected over the 35S rDNA region, transcribed by Pol I, and over the 5S rDNA, transcribed by Pol III. In strains lacking RNase H activity, R-loops were elevated over other Pol III genes, notably tRNAs, SCR1 and U6 snRNA, and were also associated with the cDNAs of endogenous TY1 retrotransposons, which showed increased rates of mobility to the 5'-flanking regions of tRNA genes. Unexpectedly, R-loops were also associated with mitochondrial genes in the absence of RNase H1, but not of RNase H2. Finally, R-loops were detected on actively transcribed protein-coding genes in the wild-type, particularly over the second exon of spliced ribosomal protein genes.

摘要

在转录过程中,新生RNA可侵入DNA模板,形成延伸的RNA-DNA双链体(R环)。在此,我们在表达或缺乏核糖核酸酶H的菌株中采用染色质免疫沉淀测序(ChIP-seq)技术,以绘制整个芽殖酵母基因组中核糖核酸酶H活性的靶点。在野生型菌株中,在由RNA聚合酶I转录的35S核糖体DNA区域以及由RNA聚合酶III转录的5S核糖体DNA上很容易检测到R环。在缺乏核糖核酸酶H活性的菌株中,R环在其他RNA聚合酶III基因(特别是tRNA、SCR1和U6小核RNA)上有所增加,并且还与内源性TY1逆转录转座子的cDNA相关,这些逆转录转座子向tRNA基因的5'侧翼区域的移动速率增加。出乎意料的是,在缺乏核糖核酸酶H1而非核糖核酸酶H2的情况下,R环也与线粒体基因相关。最后,在野生型的活跃转录的蛋白质编码基因上检测到R环,特别是在剪接的核糖体蛋白基因的第二个外显子上。

相似文献

1
Genome-wide distribution of RNA-DNA hybrids identifies RNase H targets in tRNA genes, retrotransposons and mitochondria.
PLoS Genet. 2014 Oct 30;10(10):e1004716. doi: 10.1371/journal.pgen.1004716. eCollection 2014 Oct.
2
A small targeting domain in Ty1 integrase is sufficient to direct retrotransposon integration upstream of tRNA genes.
EMBO J. 2020 Sep 1;39(17):e104337. doi: 10.15252/embj.2019104337. Epub 2020 Jul 17.
4
Genome-wide profiling of yeast DNA:RNA hybrid prone sites with DRIP-chip.
PLoS Genet. 2014 Apr 17;10(4):e1004288. doi: 10.1371/journal.pgen.1004288. eCollection 2014 Apr.
6
Retrotransposon Ty1 integration targets specifically positioned asymmetric nucleosomal DNA segments in tRNA hotspots.
Genome Res. 2012 Apr;22(4):693-703. doi: 10.1101/gr.129460.111. Epub 2012 Jan 4.
8
9
Elevated Genome-Wide Instability in Yeast Mutants Lacking RNase H Activity.
Genetics. 2015 Nov;201(3):963-75. doi: 10.1534/genetics.115.182725. Epub 2015 Sep 22.
10
A nucleosomal surface defines an integration hotspot for the Saccharomyces cerevisiae Ty1 retrotransposon.
Genome Res. 2012 Apr;22(4):704-13. doi: 10.1101/gr.129585.111. Epub 2012 Jan 4.

引用本文的文献

1
The Dynamic Interactions of m6A Modification and R-Loops: Implications for Genome Stability.
Epigenomes. 2025 Jun 11;9(2):21. doi: 10.3390/epigenomes9020021.
2
GPATCH4 functions as a regulator of nucleolar R-loops in hepatocellular carcinoma cells.
Nucleic Acids Res. 2025 May 22;53(10). doi: 10.1093/nar/gkaf438.
3
Building an integrated view of R-loops, transcription, and chromatin.
DNA Repair (Amst). 2025 May;149:103832. doi: 10.1016/j.dnarep.2025.103832. Epub 2025 Apr 8.
4
5
R-loops acted on by RNase H1 influence DNA replication timing and genome stability in Leishmania.
Nat Commun. 2025 Feb 8;16(1):1470. doi: 10.1038/s41467-025-56785-y.
6
R-loops' m6A modification and its roles in cancers.
Mol Cancer. 2024 Oct 18;23(1):232. doi: 10.1186/s12943-024-02148-y.
7
Looping forward: exploring R-loop processing and therapeutic potential.
FEBS Lett. 2025 Jan;599(2):244-266. doi: 10.1002/1873-3468.14947. Epub 2024 Jun 6.
8
Synthetic lethal mutants in define pathways necessary for survival with RNase H deficiency.
J Bacteriol. 2023 Oct 26;205(10):e0028023. doi: 10.1128/jb.00280-23. Epub 2023 Oct 11.
10
The CHCHD2/Sirt1 corepressors involve in G9a-mediated regulation of RNase H1 expression to control R-loop.
Cell Insight. 2023 Jun 4;2(4):100112. doi: 10.1016/j.cellin.2023.100112. eCollection 2023 Aug.

本文引用的文献

2
The strength of an Ig switch region is determined by its ability to drive R loop formation and its number of WGCW sites.
Cell Rep. 2014 Jul 24;8(2):557-69. doi: 10.1016/j.celrep.2014.06.021. Epub 2014 Jul 10.
3
Antibodies specific for nucleic acids and applications in genomic detection and clinical diagnostics.
Expert Rev Mol Diagn. 2014 Sep;14(7):895-916. doi: 10.1586/14737159.2014.931810. Epub 2014 Jul 11.
5
Chromatin regulates DNA torsional energy via topoisomerase II-mediated relaxation of positive supercoils.
EMBO J. 2014 Jul 1;33(13):1492-501. doi: 10.15252/embj.201488091. Epub 2014 May 23.
6
Ribonucleotides in DNA: origins, repair and consequences.
DNA Repair (Amst). 2014 Jul;19:27-37. doi: 10.1016/j.dnarep.2014.03.029. Epub 2014 Apr 30.
7
R-loops associated with triplet repeat expansions promote gene silencing in Friedreich ataxia and fragile X syndrome.
PLoS Genet. 2014 May 1;10(5):e1004318. doi: 10.1371/journal.pgen.1004318. eCollection 2014 May.
8
The contribution of co-transcriptional RNA:DNA hybrid structures to DNA damage and genome instability.
DNA Repair (Amst). 2014 Jul;19:84-94. doi: 10.1016/j.dnarep.2014.03.023. Epub 2014 Apr 18.
9
Genome-wide profiling of yeast DNA:RNA hybrid prone sites with DRIP-chip.
PLoS Genet. 2014 Apr 17;10(4):e1004288. doi: 10.1371/journal.pgen.1004288. eCollection 2014 Apr.
10
Coupling mRNA processing with transcription in time and space.
Nat Rev Genet. 2014 Mar;15(3):163-75. doi: 10.1038/nrg3662. Epub 2014 Feb 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验