Ambavaram Madana M R, Basu Supratim, Krishnan Arjun, Ramegowda Venkategowda, Batlang Utlwang, Rahman Lutfor, Baisakh Niranjan, Pereira Andy
Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia 24061, USA.
Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas 72701, USA.
Nat Commun. 2014 Oct 31;5:5302. doi: 10.1038/ncomms6302.
Plants capture solar energy and atmospheric carbon dioxide (CO2) through photosynthesis, which is the primary component of crop yield, and needs to be increased considerably to meet the growing global demand for food. Environmental stresses, which are increasing with climate change, adversely affect photosynthetic carbon metabolism (PCM) and limit yield of cereals such as rice (Oryza sativa) that feeds half the world. To study the regulation of photosynthesis, we developed a rice gene regulatory network and identified a transcription factor HYR (HIGHER YIELD RICE) associated with PCM, which on expression in rice enhances photosynthesis under multiple environmental conditions, determining a morpho-physiological programme leading to higher grain yield under normal, drought and high-temperature stress conditions. We show HYR is a master regulator, directly activating photosynthesis genes, cascades of transcription factors and other downstream genes involved in PCM and yield stability under drought and high-temperature environmental stress conditions.
植物通过光合作用捕获太阳能和大气中的二氧化碳(CO₂),光合作用是作物产量的主要构成部分,为满足全球日益增长的粮食需求,光合作用需大幅增强。随着气候变化,环境胁迫不断增加,对光合碳代谢(PCM)产生不利影响,并限制了诸如养活世界一半人口的水稻(Oryza sativa)等谷类作物的产量。为研究光合作用的调控机制,我们构建了一个水稻基因调控网络,并鉴定出一个与PCM相关的转录因子HYR(高产水稻),该因子在水稻中表达时,能在多种环境条件下增强光合作用,决定了一种形态生理程序,从而在正常、干旱和高温胁迫条件下实现更高的谷物产量。我们发现HYR是一个主要调控因子,可直接激活光合作用基因、转录因子级联反应以及其他参与PCM的下游基因,并在干旱和高温环境胁迫条件下维持产量稳定性。