Suppr超能文献

未经处理的菜籽粕在深层发酵中被枯草芽孢杆菌直接生物利用以有效生产伊枯草菌素A。

Direct bio-utilization of untreated rapeseed meal for effective iturin A production by Bacillus subtilis in submerged fermentation.

作者信息

Jin Hu, Zhang Xinran, Li Kunpeng, Niu Yanxing, Guo Mian, Hu Chuanjiong, Wan Xia, Gong Yangmin, Huang Fenghong

机构信息

Oil Crops Research Institute, Chinese Academy of Agriculture Sciences, Wuhan, China; Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, China.

Oil Crops Research Institute, Chinese Academy of Agriculture Sciences, Wuhan, China; College of Life Science, Hubei University, Wuhan, China.

出版信息

PLoS One. 2014 Oct 31;9(10):e111171. doi: 10.1371/journal.pone.0111171. eCollection 2014.

Abstract

The feasibility of using untreated rapeseed meal as a nitrogen source for iturin A production by Bacillus subtilis 3-10 in submerged fermentation was first evaluated by comparison with two different commercial nitrogen sources of peptone and ammonium nitrate. A significant promoting effect of rapeseed meal on iturin A production was observed and the maximum iturin A concentration of 0.60 g/L was reached at 70 h, which was 20% and 8.0 fold higher than that produced from peptone and ammonium nitrate media, respectively. It was shown that rapeseed meal had a positive induction effect on protease secretion, contributing to the release of soluble protein from low water solubility solid rapeseed meal for an effective supply of available nitrogen during fermentation. Moreover, compared to raw rapeseed meal, the remaining residue following fermentation could be used as a more suitable supplementary protein source for animal feed because of the great decrease of major anti-nutritional components including sinapine, glucosinolate and its degradation products of isothiocyanate and oxazolidine thione. The results obtained from this study demonstrate the potential of direct utilization of low cost rapeseed meal as a nitrogen source for commercial production of iturin A and other secondary metabolites by Bacillus subtilis.

摘要

通过与蛋白胨和硝酸铵这两种不同的商业氮源进行比较,首次评估了在深层发酵中使用未处理的菜籽粕作为枯草芽孢杆菌3-10生产伊枯草菌素A的氮源的可行性。观察到菜籽粕对伊枯草菌素A的生产有显著的促进作用,在70小时时达到了0.60 g/L的最大伊枯草菌素A浓度,分别比蛋白胨和硝酸铵培养基产生的浓度高20%和8.0倍。结果表明,菜籽粕对蛋白酶分泌有积极的诱导作用,有助于从低水溶性固体菜籽粕中释放可溶性蛋白质,以便在发酵过程中有效供应可用氮。此外,与未发酵的菜籽粕相比,发酵后的剩余残渣可作为更合适的动物饲料补充蛋白质来源,因为主要抗营养成分包括芥子碱、硫代葡萄糖苷及其降解产物异硫氰酸盐和恶唑烷硫酮的含量大幅降低。本研究所得结果证明了直接利用低成本菜籽粕作为氮源,通过枯草芽孢杆菌商业生产伊枯草菌素A和其他次级代谢产物的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf0d/4215929/28abe864e6f6/pone.0111171.g001.jpg

相似文献

1
Direct bio-utilization of untreated rapeseed meal for effective iturin A production by Bacillus subtilis in submerged fermentation.
PLoS One. 2014 Oct 31;9(10):e111171. doi: 10.1371/journal.pone.0111171. eCollection 2014.
4
Co-producing iturin A and poly-γ-glutamic acid from rapeseed meal under solid state fermentation by the newly isolated Bacillus subtilis strain 3-10.
World J Microbiol Biotechnol. 2012 Mar;28(3):985-91. doi: 10.1007/s11274-011-0896-y. Epub 2011 Oct 29.
5
Application of malt residue in submerged fermentation of Bacillus subtilis.
J Environ Sci (China). 2009;21 Suppl 1:S33-5. doi: 10.1016/S1001-0742(09)60030-9.
6
Improvement of production of lipopeptide antibiotic iturin A using fish protein.
J Environ Sci (China). 2013 Dec;25 Suppl 1:S2-7. doi: 10.1016/S1001-0742(14)60616-1.
8
Elucidation of Bacillus subtilis KATMIRA 1933 Potential for Spore Production in Submerged Fermentation of Plant Raw Materials.
Probiotics Antimicrob Proteins. 2017 Dec;9(4):435-443. doi: 10.1007/s12602-017-9303-9.
9
Establishment of a rapeseed meal fermentation model for iturin A production by Bacillus amyloliquefaciens CX-20.
Microb Biotechnol. 2019 Nov;12(6):1417-1429. doi: 10.1111/1751-7915.13483. Epub 2019 Sep 30.
10
Solid state fermentation of lipopeptide antibiotic iturin A by using a novel solid state fermentation reactor system.
J Environ Sci (China). 2009;21 Suppl 1:S162-5. doi: 10.1016/S1001-0742(09)60064-4.

引用本文的文献

1
Biological Characterization and Glucosinolate Degradation Mechanisms of BSY82 in Rapeseed Meal.
Aquac Nutr. 2025 Jul 30;2025:3661772. doi: 10.1155/anu/3661772. eCollection 2025.
2
Application of Microorganisms for the Valorization of Side-Products of Rapeseed De-Oiling.
Biomolecules. 2025 Jun 22;15(7):917. doi: 10.3390/biom15070917.
3
Biotransformation technology and high-value application of rapeseed meal: a review.
Bioresour Bioprocess. 2022 Sep 24;9(1):103. doi: 10.1186/s40643-022-00586-4.
4
Iturin: A Promising Cyclic Lipopeptide with Diverse Applications.
Biomolecules. 2023 Oct 12;13(10):1515. doi: 10.3390/biom13101515.
5
Antimicrobial : Metabolites and Their Mode of Action.
Antibiotics (Basel). 2022 Jan 12;11(1):88. doi: 10.3390/antibiotics11010088.
6
Optimization of iturin A production from ZK-H2 in submerge fermentation by response surface methodology.
3 Biotech. 2021 Feb;11(2):36. doi: 10.1007/s13205-020-02540-7. Epub 2021 Jan 7.
7
The unconventional adverse effects of fungal pretreatment on iturin A fermentation by Bacillus amyloliquefaciens CX-20.
Microb Biotechnol. 2021 Mar;14(2):587-599. doi: 10.1111/1751-7915.13658. Epub 2020 Sep 30.
9
Advances on research in the use of agro-industrial waste in biosurfactant production.
World J Microbiol Biotechnol. 2019 Oct 1;35(10):155. doi: 10.1007/s11274-019-2729-3.
10
Establishment of a rapeseed meal fermentation model for iturin A production by Bacillus amyloliquefaciens CX-20.
Microb Biotechnol. 2019 Nov;12(6):1417-1429. doi: 10.1111/1751-7915.13483. Epub 2019 Sep 30.

本文引用的文献

1
Rapeseed and sunflower meal: a review on biotechnology status and challenges.
Appl Microbiol Biotechnol. 2012 Sep;95(5):1105-14. doi: 10.1007/s00253-012-4250-6. Epub 2012 Jul 3.
3
Enhancing the value of nitrogen from rapeseed meal for microbial oil production.
Enzyme Microb Technol. 2012 May 10;50(6-7):337-42. doi: 10.1016/j.enzmictec.2012.03.004. Epub 2012 Mar 22.
4
Simultaneous saccharification and fermentation of acid-pretreated rapeseed meal for succinic acid production using Actinobacillus succinogenes.
Enzyme Microb Technol. 2011 Apr 7;48(4-5):339-44. doi: 10.1016/j.enzmictec.2010.12.009. Epub 2010 Dec 23.
5
Advances in utilization of renewable substrates for biosurfactant production.
AMB Express. 2011 Mar 28;1(1):5. doi: 10.1186/2191-0855-1-5.
6
Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture.
Curr Opin Biotechnol. 2011 Apr;22(2):187-93. doi: 10.1016/j.copbio.2010.12.003. Epub 2011 Jan 4.
7
Application of rhamnolipid and surfactin for enhanced diesel biodegradation--effects of pH and ammonium addition.
J Hazard Mater. 2009 May 30;164(2-3):1045-50. doi: 10.1016/j.jhazmat.2008.09.006. Epub 2008 Sep 6.
8
Bacillus lipopeptides: versatile weapons for plant disease biocontrol.
Trends Microbiol. 2008 Mar;16(3):115-25. doi: 10.1016/j.tim.2007.12.009.
10
Characterization of new biosurfactant produced by Klebsiella sp. Y6-1 isolated from waste soybean oil.
Bioresour Technol. 2008 May;99(7):2288-92. doi: 10.1016/j.biortech.2007.05.020. Epub 2007 Jun 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验