Marwaha Shruti, Schumacher Michael A, Zavros Yana, Eghbalnia Hamid R
Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio, United States of America.
PLoS One. 2014 Nov 3;9(11):e111338. doi: 10.1371/journal.pone.0111338. eCollection 2014.
Helicobacter pylori infection of gastric tissue results in an immune response dominated by Th1 cytokines and has also been linked with dysregulation of Sonic Hedgehog (SHH) signaling pathway in gastric tissue. However, since interactions between the cytokines and SHH during H. pylori infection are not well understood, any mechanistic understanding achieved through interpretation of the statistical analysis of experimental results in the context of currently known circuit must be carefully scrutinized. Here, we use mathematical modeling aided by restraints of experimental data to evaluate the consistency between experimental results and temporal behavior of H. pylori activated cytokine circuit model. Statistical analysis of qPCR data from uninfected and H. pylori infected wild-type and parietal cell-specific SHH knockout (PC-SHHKO) mice for day 7 and 180 indicate significant changes that suggest role of SHH in cytokine regulation. The experimentally observed changes are further investigated using a mathematical model that examines dynamic crosstalks among pro-inflammatory (IL1β, IL-12, IFNγ, MIP-2) cytokines, anti-inflammatory (IL-10) cytokines and SHH during H. pylori infection. Response analysis of the resulting model demonstrates that circuitry, as currently known, is inadequate for explaining of the experimental observations; suggesting the need for additional specific regulatory interactions. A key advantage of a computational model is the ability to propose putative circuit models for in-silico experimentation. We use this approach to propose a parsimonious model that incorporates crosstalks between NFĸB, SHH, IL-1β and IL-10, resulting in a feedback loop capable of exhibiting cyclic behavior. Separately, we show that analysis of an independent time-series GEO microarray data for IL-1β, IFNγ and IL-10 in mock and H. pylori infected mice further supports the proposed hypothesis that these cytokines may follow a cyclic trend. Predictions from the in-silico model provide useful insights for generating new hypothesis and design of subsequent experimental studies.
胃组织的幽门螺杆菌感染会引发以Th1细胞因子为主导的免疫反应,并且还与胃组织中Sonic Hedgehog(SHH)信号通路的失调有关。然而,由于幽门螺杆菌感染期间细胞因子与SHH之间的相互作用尚未完全明确,因此,在当前已知通路的背景下,通过对实验结果进行统计分析所获得的任何机制性理解都必须仔细审查。在此,我们借助实验数据的约束进行数学建模,以评估实验结果与幽门螺杆菌激活的细胞因子通路模型的时间行为之间的一致性。对未感染和幽门螺杆菌感染的野生型及壁细胞特异性SHH基因敲除(PC-SHHKO)小鼠在第7天和第180天的qPCR数据进行统计分析,结果表明存在显著变化,这表明SHH在细胞因子调节中发挥作用。使用数学模型对实验观察到的变化进行进一步研究,该模型考察了幽门螺杆菌感染期间促炎(IL1β、IL-12、IFNγ、MIP-2)细胞因子、抗炎(IL-10)细胞因子和SHH之间的动态相互作用。对所得模型的反应分析表明,就目前所知,该通路不足以解释实验观察结果;这表明需要额外的特定调节相互作用。计算模型的一个关键优势在于能够为计算机模拟实验提出假定的通路模型。我们采用这种方法提出了一个简约模型,该模型纳入了NFĸB、SHH、IL-1β和IL-10之间的相互作用,从而形成一个能够呈现周期性行为的反馈回路。另外,我们表明,对模拟感染和幽门螺杆菌感染小鼠中IL-1β、IFNγ和IL-10的独立时间序列GEO微阵列数据进行分析,进一步支持了所提出的假说,即这些细胞因子可能呈现周期性趋势。计算机模拟模型的预测为生成新假说和设计后续实验研究提供了有用的见解。