Ong Han B, Lee Wai S, Patterson Stephen, Wyllie Susan, Fairlamb Alan H
Division of Biological Chemistry & Drug Discovery, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
Mol Microbiol. 2015 Jan;95(1):143-56. doi: 10.1111/mmi.12853. Epub 2014 Nov 25.
De novo synthesis of threonine from aspartate occurs via the β-aspartyl phosphate pathway in plants, bacteria and fungi. However, the Trypanosoma brucei genome encodes only the last two steps in this pathway: homoserine kinase (HSK) and threonine synthase. Here, we investigated the possible roles for this incomplete pathway through biochemical, genetic and nutritional studies. Purified recombinant TbHSK specifically phosphorylates L-homoserine and displays kinetic properties similar to other HSKs. HSK null mutants generated in bloodstream forms displayed no growth phenotype in vitro or loss of virulence in vivo. However, following transformation into procyclic forms, homoserine, homoserine lactone and certain acyl homoserine lactones (AHLs) were found to substitute for threonine in growth media for wild-type procyclics, but not HSK null mutants. The tsetse fly is considered to be an unlikely source of these nutrients as it feeds exclusively on mammalian blood. Bioinformatic studies predict that tsetse endosymbionts possess part (up to homoserine in Wigglesworthia glossinidia) or all of the β-aspartyl phosphate pathway (Sodalis glossinidius). In addition S. glossinidius is known to produce 3-oxohexanoylhomoserine lactone which also supports trypanosome growth. We propose that T. brucei has retained HSK and threonine synthase in order to salvage these nutrients when threonine availability is limiting.
在植物、细菌和真菌中,天冬氨酸从头合成苏氨酸是通过β-天冬氨酰磷酸途径进行的。然而,布氏锥虫基因组仅编码该途径的最后两步:高丝氨酸激酶(HSK)和苏氨酸合酶。在这里,我们通过生化、遗传和营养研究,探究了这条不完整途径可能发挥的作用。纯化的重组布氏锥虫HSK特异性地磷酸化L-高丝氨酸,并且表现出与其他HSK相似的动力学特性。在血流形式中产生的HSK基因敲除突变体在体外没有生长表型,在体内也没有毒力丧失。然而,转化为前循环形式后,发现高丝氨酸、高丝氨酸内酯和某些酰基高丝氨酸内酯(AHLs)可以替代野生型前循环形式生长培养基中的苏氨酸,但不能替代HSK基因敲除突变体中的苏氨酸。采采蝇被认为不太可能是这些营养物质的来源,因为它只以哺乳动物血液为食。生物信息学研究预测,采采蝇内共生菌拥有部分(在冈比亚按蚊体内可达高丝氨酸)或全部β-天冬氨酰磷酸途径(舌蝇嗜菌杆菌)。此外,已知舌蝇嗜菌杆菌会产生3-氧代己酰高丝氨酸内酯,它也能支持锥虫生长。我们认为,当苏氨酸可用性受到限制时,布氏锥虫保留了HSK和苏氨酸合酶以便挽救这些营养物质。