Suppr超能文献

利用耐受性工程提高大肠杆菌中微生物生物汽油的产量。

Improving microbial biogasoline production in Escherichia coli using tolerance engineering.

作者信息

Foo Jee Loon, Jensen Heather M, Dahl Robert H, George Kevin, Keasling Jay D, Lee Taek Soon, Leong Susanna, Mukhopadhyay Aindrila

机构信息

Department of Chemical & Biomolecular Engineering and Department of Bioengineering, University of California, Berkeley, California, USA.

出版信息

mBio. 2014 Nov 4;5(6):e01932. doi: 10.1128/mBio.01932-14.

Abstract

UNLABELLED

Engineering microbial hosts for the production of fungible fuels requires mitigation of limitations posed on the production capacity. One such limitation arises from the inherent toxicity of solvent-like biofuel compounds to production strains, such as Escherichia coli. Here we show the importance of host engineering for the production of short-chain alcohols by studying the overexpression of genes upregulated in response to exogenous isopentenol. Using systems biology data, we selected 40 genes that were upregulated following isopentenol exposure and subsequently overexpressed them in E. coli. Overexpression of several of these candidates improved tolerance to exogenously added isopentenol. Genes conferring isopentenol tolerance phenotypes belonged to diverse functional groups, such as oxidative stress response (soxS, fpr, and nrdH), general stress response (metR, yqhD, and gidB), heat shock-related response (ibpA), and transport (mdlB). To determine if these genes could also improve isopentenol production, we coexpressed the tolerance-enhancing genes individually with an isopentenol production pathway. Our data show that expression of 6 of the 8 candidates improved the production of isopentenol in E. coli, with the methionine biosynthesis regulator MetR improving the titer for isopentenol production by 55%. Additionally, expression of MdlB, an ABC transporter, facilitated a 12% improvement in isopentenol production. To our knowledge, MdlB is the first example of a transporter that can be used to improve production of a short-chain alcohol and provides a valuable new avenue for host engineering in biogasoline production.

IMPORTANCE

The use of microbial host platforms for the production of bulk commodities, such as chemicals and fuels, is now a focus of many biotechnology efforts. Many of these compounds are inherently toxic to the host microbe, which in turn places a limit on production despite efforts to optimize the bioconversion pathways. In order to achieve economically viable production levels, it is also necessary to engineer production strains with improved tolerance to these compounds. We demonstrate that microbial tolerance engineering using transcriptomics data can also identify targets that improve production. Our results include an exporter and a methionine biosynthesis regulator that improve isopentenol production, providing a starting point to further engineer the host for biogasoline production.

摘要

未加标签

设计用于生产可替代燃料的微生物宿主需要缓解对生产能力造成的限制。其中一个限制源于类似溶剂的生物燃料化合物对生产菌株(如大肠杆菌)的内在毒性。在这里,我们通过研究响应外源异戊烯醇而上调的基因的过表达,展示了宿主工程对短链醇生产的重要性。利用系统生物学数据,我们选择了40个在异戊烯醇暴露后上调的基因,随后在大肠杆菌中过表达它们。这些候选基因中的几个过表达提高了对外源添加异戊烯醇的耐受性。赋予异戊烯醇耐受性表型的基因属于不同的功能组,如氧化应激反应(soxS、fpr和nrdH)、一般应激反应(metR、yqhD和gidB)、热休克相关反应(ibpA)和转运(mdlB)。为了确定这些基因是否也能提高异戊烯醇的产量,我们将耐受性增强基因分别与异戊烯醇生产途径共表达。我们的数据表明,8个候选基因中的6个的表达提高了大肠杆菌中异戊烯醇的产量,其中甲硫氨酸生物合成调节因子MetR使异戊烯醇的产量提高了55%。此外,ABC转运蛋白MdlB的表达使异戊烯醇的产量提高了12%。据我们所知,MdlB是第一个可用于提高短链醇产量的转运蛋白实例,为生物汽油生产中的宿主工程提供了一条有价值的新途径。

重要性

利用微生物宿主平台生产大宗化学品和燃料等商品,如今是许多生物技术努力的重点。这些化合物中的许多对宿主微生物具有内在毒性,这反过来限制了产量,尽管人们努力优化生物转化途径。为了实现经济上可行的生产水平,还需要对生产菌株进行工程改造,以提高对这些化合物的耐受性。我们证明,利用转录组学数据进行微生物耐受性工程也可以识别提高产量的靶点。我们的结果包括一个转运蛋白和一个甲硫氨酸生物合成调节因子,它们提高了异戊烯醇的产量,为进一步改造宿主用于生物汽油生产提供了一个起点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea64/4222104/c5ac4b569f12/mbo0051420490001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验