Suppr超能文献

一种用于鲁棒实时均值漂移跟踪的目标模型构建算法。

A target model construction algorithm for robust real-time mean-shift tracking.

作者信息

Choi Yoo-Joo, Kim Yong-Goo

机构信息

Department of Newmedia, Korean German Institute of Technology, 99, Hwagok-ro 61-gil, Gangseo-gu, Seoul 157-930, Korea.

出版信息

Sensors (Basel). 2014 Nov 3;14(11):20736-52. doi: 10.3390/s141120736.

Abstract

Mean-shift tracking has gained more interests, nowadays, aided by its feasibility of real-time and reliable tracker implementation. In order to reduce background clutter interference to mean-shift object tracking, this paper proposes a novel indicator function generation method. The proposed method takes advantage of two 'a priori' knowledge elements, which are inherent to a kernel support for initializing a target model. Based on the assured background labels, a gradient-based label propagation is performed, resulting in a number of objects differentiated from the background. Then the proposed region growing scheme picks up one largest target object near the center of the kernel support. The grown object region constitutes the proposed indicator function and this allows an exact target model construction for robust mean-shift tracking. Simulation results demonstrate the proposed exact target model could significantly enhance the robustness as well as the accuracy of mean-shift object tracking.

摘要

如今,均值漂移跟踪因其在实时和可靠跟踪器实现方面的可行性而受到更多关注。为了减少背景杂波对均值漂移目标跟踪的干扰,本文提出了一种新颖的指示函数生成方法。该方法利用了两个“先验”知识元素,这两个元素是内核支持初始化目标模型所固有的。基于确定的背景标签,执行基于梯度的标签传播,从而区分出一些与背景不同的物体。然后,所提出的区域生长方案在核支持中心附近选取一个最大的目标物体。生长后的物体区域构成了所提出的指示函数,这使得能够构建精确的目标模型以实现鲁棒的均值漂移跟踪。仿真结果表明,所提出的精确目标模型能够显著提高均值漂移目标跟踪的鲁棒性和准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0fc4/4279509/8518f52b7d43/sensors-14-20736f1.jpg

相似文献

1
A target model construction algorithm for robust real-time mean-shift tracking.
Sensors (Basel). 2014 Nov 3;14(11):20736-52. doi: 10.3390/s141120736.
2
Applying mean shift, motion information and Kalman filtering approaches to object tracking.
ISA Trans. 2012 May;51(3):485-97. doi: 10.1016/j.isatra.2012.02.002. Epub 2012 Mar 10.
3
PageRank tracker: from ranking to tracking.
IEEE Trans Cybern. 2014 Jun;44(6):882-93. doi: 10.1109/TCYB.2013.2274516. Epub 2013 Aug 15.
4
Improved infrared target-tracking algorithm based on mean shift.
Appl Opt. 2012 Jul 20;51(21):5051-9. doi: 10.1364/AO.51.005051.
5
Robust multiperson detection and tracking for mobile service and social robots.
IEEE Trans Syst Man Cybern B Cybern. 2012 Oct;42(5):1398-412. doi: 10.1109/TSMCB.2012.2192107. Epub 2012 Apr 19.
6
Robust object tracking via sparse collaborative appearance model.
IEEE Trans Image Process. 2014 May;23(5):2356-68. doi: 10.1109/TIP.2014.2313227.
7
Nonlinear dynamic model for visual object tracking on Grassmann manifolds with partial occlusion handling.
IEEE Trans Cybern. 2013 Dec;43(6):2005-19. doi: 10.1109/TSMCB.2013.2237900.
8
Adaptive mean-shift tracking with auxiliary particles.
IEEE Trans Syst Man Cybern B Cybern. 2009 Dec;39(6):1578-89. doi: 10.1109/TSMCB.2009.2021482. Epub 2009 Jun 19.
9
SIFT flow for large-displacement object tracking.
Appl Opt. 2014 Sep 20;53(27):6194-205. doi: 10.1364/AO.53.006194.
10
An efficient sequential approach to tracking multiple objects through crowds for real-time intelligent CCTV systems.
IEEE Trans Syst Man Cybern B Cybern. 2008 Oct;38(5):1254-69. doi: 10.1109/TSMCB.2008.927265.

引用本文的文献

2
Real-Time Tracking Framework with Adaptive Features and Constrained Labels.
Sensors (Basel). 2016 Sep 8;16(9):1449. doi: 10.3390/s16091449.
3
Enhancement of ELDA Tracker Based on CNN Features and Adaptive Model Update.
Sensors (Basel). 2016 Apr 15;16(4):545. doi: 10.3390/s16040545.
4
Tracking Multiple Video Targets with an Improved GM-PHD Tracker.
Sensors (Basel). 2015 Dec 3;15(12):30240-60. doi: 10.3390/s151229794.
5
Visual tracking based on extreme learning machine and sparse representation.
Sensors (Basel). 2015 Oct 22;15(10):26877-905. doi: 10.3390/s151026877.

本文引用的文献

1
Robust kernel-based tracking with multiple subtemplates in vision guidance system.
Sensors (Basel). 2012;12(2):1990-2004. doi: 10.3390/s120201990. Epub 2012 Feb 10.
2
Mean shift trackers with cross-bin metrics.
IEEE Trans Pattern Anal Mach Intell. 2012 Apr;34(4):695-706. doi: 10.1109/TPAMI.2011.167.
3
Differential earth mover's distance with its applications to visual tracking.
IEEE Trans Pattern Anal Mach Intell. 2010 Feb;32(2):274-87. doi: 10.1109/TPAMI.2008.299.
4
Automatic image segmentation by dynamic region growth and multiresolution merging.
IEEE Trans Image Process. 2009 Oct;18(10):2275-88. doi: 10.1109/TIP.2009.2025555. Epub 2009 Jun 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验