Ko Jong Wan, Son Eun Jin, Park Chan Beum
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 305701, Republic of Korea.
ChemSusChem. 2017 Jun 22;10(12):2585-2591. doi: 10.1002/cssc.201700616. Epub 2017 May 24.
Biomineralization is a biogenic process that produces elaborate inorganic and organic hybrid materials in nature. Inspired by the natural process, this study explored a new mineralization approach to create nanostructured CaCO films composed of amorphous CaCO hemispheres by using catechol-rich polydopamine (PDA) as a biomimetic mediator. The thus synthesized biomimetic CaCO was successfully transformed to nanostructured films of metal-oxide minerals, such as FeOOH, CoCO , NiCO , and MnOOH, through a simple procedure. The CaCO -templated metal-oxide minerals functioned as efficient electrocatalysts; a CaCO -templated cobalt phosphate (nanoCoPi) film exhibited high stability as a water-oxidation electrocatalyst with a current density of 1.5 mA cm . The nanostructure of nanoCoPi, consisting of individual nanoparticles (≈70 nm) and numerous internal pores (BET surface area: 3.17 m g ), facilitated an additional charge-transfer pathway from the electrode to individual active sites of the catalyst. This work demonstrates a plausible strategy for facile and green synthesis of nanostructured electrocatalysts through biomimetic CaCO mineralization.
生物矿化是一种在自然界中产生精细无机和有机杂化材料的生物过程。受此自然过程启发,本研究探索了一种新的矿化方法,通过使用富含儿茶酚的聚多巴胺(PDA)作为仿生介质,制备由无定形碳酸钙半球组成的纳米结构碳酸钙薄膜。通过简单的步骤,如此合成的仿生碳酸钙成功转化为金属氧化物矿物的纳米结构薄膜,如FeOOH、CoCO、NiCO和MnOOH。以碳酸钙为模板的金属氧化物矿物作为高效的电催化剂;以碳酸钙为模板的磷酸钴(nanoCoPi)薄膜作为析氧电催化剂表现出高稳定性,电流密度为1.5 mA cm。nanoCoPi的纳米结构由单个纳米颗粒(≈70 nm)和众多内部孔隙(BET表面积:3.17 m g)组成,促进了从电极到催化剂各个活性位点的额外电荷转移途径。这项工作展示了一种通过仿生碳酸钙矿化简便绿色合成纳米结构电催化剂的可行策略。
Biomaterials. 2010-6-11
Colloids Surf B Biointerfaces. 2014-3-29
Nanomicro Lett. 2022-7-18