Suppr超能文献

多孔膜和聚二甲基硅氧烷器件的稳定化学键合,用于长期细胞培养。

Stable chemical bonding of porous membranes and poly(dimethylsiloxane) devices for long-term cell culture.

机构信息

Department of Bioengineering, University of Washington , Seattle, Washington 98185, USA.

出版信息

Biomicrofluidics. 2014 Jun 16;8(3):036504. doi: 10.1063/1.4883075. eCollection 2014 May.

Abstract

We have investigated the bonding stability of various silane treatments for the integration of track-etched membranes with poly(dimethylsiloxane) (PDMS) microfluidic devices. We compare various treatments using trialkoxysilanes or dipodal silanes to determine the effect of the organofunctional group, cross-link density, reaction solvent, and catalyst on the bond stability. We find that devices made using existing silane methods delaminated after one day when immersed in cell culture medium at 37 °C. In contrast, the dipodal silane, bis[3-(trimethoxysilyl)propyl]amine, is shown to yield stable and functional integration of membranes with PDMS that is suitable for long-term cell culture. To demonstrate application of the technique, we fabricated an open-surface device in which cells cultured on a track-etched membrane can be stimulated at their basal side via embedded microfluidic channels. C2C12 mouse myoblasts were differentiated into myotubes over the course of two weeks on these devices to demonstrate biocompatibility. Finally, devices were imaged during the basal-side delivery of a fluorescent stain to validate the membrane operation and long-term stability of the bonding technique.

摘要

我们研究了各种硅烷处理方法对带有聚二甲基硅氧烷(PDMS)微流控器件的刻蚀通道膜的键合稳定性。我们比较了使用三烷氧基硅烷或双齿硅烷的各种处理方法,以确定有机官能团、交联密度、反应溶剂和催化剂对键合稳定性的影响。我们发现,在用现有的硅烷方法制备的器件中,当在 37°C 的细胞培养液中浸泡一天后,器件会分层。相比之下,双齿硅烷双[3-(三甲氧基硅基)丙基]胺可实现 PDMS 与膜的稳定和功能集成,适用于长期细胞培养。为了展示该技术的应用,我们制造了一种开放式表面器件,其中可以通过嵌入式微流道在基底侧刺激培养在刻蚀通道膜上的细胞。在这些器件上,C2C12 小鼠成肌细胞分化为肌管,持续两周以证明其生物相容性。最后,在基底侧输送荧光染料时对器件进行成像,以验证膜的工作和键合技术的长期稳定性。

相似文献

1
Stable chemical bonding of porous membranes and poly(dimethylsiloxane) devices for long-term cell culture.
Biomicrofluidics. 2014 Jun 16;8(3):036504. doi: 10.1063/1.4883075. eCollection 2014 May.
2
Plastic-PDMS bonding for high pressure hydrolytically stable active microfluidics.
Lab Chip. 2009 Jun 7;9(11):1618-24. doi: 10.1039/b820924c. Epub 2009 Mar 13.
3
Shear bond strength between resin and zirconia with two different silane blends.
Acta Odontol Scand. 2012 Sep;70(5):405-13. doi: 10.3109/00016357.2011.630014. Epub 2012 Mar 9.
5
Leakage-free bonding of porous membranes into layered microfluidic array systems.
Anal Chem. 2007 May 1;79(9):3504-8. doi: 10.1021/ac062118p. Epub 2007 Mar 28.
6
Three-dimensional interconnected microporous poly(dimethylsiloxane) microfluidic devices.
Lab Chip. 2011 Apr 21;11(8):1541-4. doi: 10.1039/c0lc00660b. Epub 2011 Feb 28.
8
9
Solution-phase surface modification in intact poly(dimethylsiloxane) microfluidic channels.
Anal Chem. 2006 Aug 1;78(15):5543-51. doi: 10.1021/ac060605z.

引用本文的文献

3
Microphysiological Drug-Testing Platform for Identifying Responses to Prodrug Treatment in Primary Leukemia.
Adv Healthc Mater. 2023 Jan;12(6):e2202506. doi: 10.1002/adhm.202202506. Epub 2023 Jan 27.
4
Multiplexed microfluidic platform for stem-cell derived pancreatic islet β cells.
Lab Chip. 2022 Nov 8;22(22):4430-4442. doi: 10.1039/d2lc00468b.
5
Design and Fabrication of Organ-on-Chips: Promises and Challenges.
Micromachines (Basel). 2021 Nov 25;12(12):1443. doi: 10.3390/mi12121443.
8
Review of Design Considerations for Brain-on-a-Chip Models.
Micromachines (Basel). 2021 Apr 15;12(4):441. doi: 10.3390/mi12040441.
9
A Fast Alternative to Soft Lithography for the Fabrication of Organ-on-a-Chip Elastomeric-Based Devices and Microactuators.
Adv Sci (Weinh). 2021 Feb 8;8(8):2003273. doi: 10.1002/advs.202003273. eCollection 2021 Apr.
10
Organ-On-Chip Technology: The Future of Feto-Maternal Interface Research?
Front Physiol. 2020 Jun 30;11:715. doi: 10.3389/fphys.2020.00715. eCollection 2020.

本文引用的文献

1
Microfluidic transwell inserts for generation of tissue culture-friendly gradients in well plates.
Lab Chip. 2014 Jan 21;14(2):302-14. doi: 10.1039/c3lc51052b. Epub 2013 Nov 13.
2
A modular approach to create a neurovascular unit-on-a-chip.
Lab Chip. 2013 Feb 21;13(4):542-53. doi: 10.1039/c2lc41033h.
4
Spatiotemporally controlled delivery of soluble factors for stem cell differentiation.
Lab Chip. 2012 Nov 7;12(21):4508-15. doi: 10.1039/c2lc40268h.
5
Membrane-integrated microfluidic device for high-resolution live cell imaging.
Biomicrofluidics. 2011 Dec;5(4):46501-465016. doi: 10.1063/1.3647824. Epub 2011 Oct 17.
6
Concentration landscape generators for shear free dynamic chemical stimulation.
Lab Chip. 2012 Apr 7;12(7):1340-6. doi: 10.1039/c2lc20994b. Epub 2012 Feb 20.
7
Rapid spatial and temporal controlled signal delivery over large cell culture areas.
Lab Chip. 2011 Sep 21;11(18):3057-63. doi: 10.1039/c1lc20311h. Epub 2011 Aug 1.
8
Nanoporous membrane-sealed microfluidic devices for improved cell viability.
Biomed Microdevices. 2011 Dec;13(6):955-61. doi: 10.1007/s10544-011-9565-z.
9
Simple room temperature bonding of thermoplastics and poly(dimethylsiloxane).
Lab Chip. 2011 Mar 7;11(5):962-5. doi: 10.1039/c0lc00272k. Epub 2010 Dec 8.
10
A microfluidic platform for generation of sharp gradients in open-access culture.
Biomicrofluidics. 2010 Nov 2;4(4):44105. doi: 10.1063/1.3490784.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验