Suppr超能文献

基于磁泳的微流控 DNA 分离装置。

Magnetophoretic-based microfluidic device for DNA isolation.

机构信息

Department of Mechanical Engineering, Southern Illinois University Edwardsville , Edwardsville, Illinois 62026, USA.

出版信息

Biomicrofluidics. 2014 Aug 22;8(4):044118. doi: 10.1063/1.4893772. eCollection 2014 Jul.

Abstract

This paper presents a continuous flow microfluidic device for the separation of DNA from blood using magnetophoresis for biological applications and analysis. This microfluidic bio-separation device has several benefits, including decreased sample handling, smaller sample and reagent volumes, faster isolation time, and decreased cost to perform DNA isolation. One of the key features of this device is the use of short-range magnetic field gradients, generated by a micro-patterned nickel array on the bottom surface of the separation channel. In addition, the device utilizes an array of oppositely oriented, external permanent magnets to produce strong long-range field gradients at the interfaces between magnets, further increasing the effectiveness of the device. A comprehensive simulation is performed using COMSOL Multiphysics to study the effect of various parameters on the magnetic flux within the separation channel. Additionally, a microfluidic device is designed, fabricated, and tested to isolate DNA from blood. The results show that the device has the capability of separating DNA from a blood sample with a purity of 1.8 or higher, a yield of up to 33 μg of polymerase chain reaction ready DNA per milliliter of blood, and a volumetric throughput of up to 50 ml/h.

摘要

本文提出了一种基于连续流微流控的 DNA 分离装置,采用磁泳技术用于生物应用和分析。这种微流控生物分离装置具有多个优点,包括减少样本处理、减少样本和试剂用量、更快的分离时间以及降低 DNA 分离成本。该装置的一个关键特点是使用短程磁场梯度,通过在分离通道的下表面微图案化镍阵列产生。此外,该装置利用一系列相反取向的外部永磁体在磁铁之间的界面产生强远程磁场梯度,进一步提高了装置的效率。使用 COMSOL Multiphysics 进行了全面的模拟,以研究各种参数对分离通道内磁通量的影响。此外,还设计、制造和测试了一种微流控装置,以从血液中分离 DNA。结果表明,该装置具有从血液样本中分离 DNA 的能力,纯度高达 1.8 或更高,每毫升血液可获得高达 33μg 的聚合酶链反应(PCR)就绪 DNA,体积通量高达 50ml/h。

相似文献

1
Magnetophoretic-based microfluidic device for DNA isolation.
Biomicrofluidics. 2014 Aug 22;8(4):044118. doi: 10.1063/1.4893772. eCollection 2014 Jul.
2
Continuous isolation of monocytes using a magnetophoretic-based microfluidic Chip.
Biomed Microdevices. 2016 Oct;18(5):77. doi: 10.1007/s10544-016-0105-8.
3
On-chip magnetophoretic isolation of CD4 + T cells from blood.
Biomicrofluidics. 2013 Sep 11;7(5):54106. doi: 10.1063/1.4821628. eCollection 2013.
5
Enhanced microfluidic multi-target separation by positive and negative magnetophoresis.
Sci Rep. 2024 Jun 10;14(1):13293. doi: 10.1038/s41598-024-64330-y.
6
High-Resolution Separation of Nanoparticles Using a Negative Magnetophoretic Microfluidic System.
Micromachines (Basel). 2022 Feb 26;13(3):377. doi: 10.3390/mi13030377.
7
Magnetophoretic-based microfluidic device for DNA Concentration.
Biomed Microdevices. 2016 Apr;18(2):28. doi: 10.1007/s10544-016-0051-5.
8
Advection Flows-Enhanced Magnetic Separation for High-Throughput Bacteria Separation from Undiluted Whole Blood.
Small. 2018 Aug;14(34):e1801731. doi: 10.1002/smll.201801731. Epub 2018 Jul 25.
9
Microfluidic magnetophoretic separations of immunomagnetically labeled rare mammalian cells.
Lab Chip. 2012 Apr 21;12(8):1471-9. doi: 10.1039/c2lc40113d. Epub 2012 Mar 7.
10
Design of a Hybrid Inertial and Magnetophoretic Microfluidic Device for CTCs Separation from Blood.
Micromachines (Basel). 2021 Jul 26;12(8):877. doi: 10.3390/mi12080877.

引用本文的文献

1
Enhancing cell characterization with microfluidics and AI: a comprehensive review of mechanical, electrical, and hybrid techniques.
Biotechnol Rep (Amst). 2025 Jul 22;47:e00905. doi: 10.1016/j.btre.2025.e00905. eCollection 2025 Sep.
2
Magnetophoretic circuits: A review of device designs and implementation for precise single-cell manipulation.
Anal Chim Acta. 2023 Sep 1;1272:341425. doi: 10.1016/j.aca.2023.341425. Epub 2023 May 31.
3
Magnetic Bead Manipulation in Microfluidic Chips for Biological Application.
Cyborg Bionic Syst. 2023 Apr 14;4:0023. doi: 10.34133/cbsystems.0023. eCollection 2023.
5
Recovery of Magnetic Catalysts: Advanced Design for Process Intensification.
Ind Eng Chem Res. 2021 Nov 24;60(46):16780-16790. doi: 10.1021/acs.iecr.1c03474. Epub 2021 Sep 22.
8
Continuous Microfluidic Purification of DNA Using Magnetophoresis.
Micromachines (Basel). 2020 Feb 11;11(2):187. doi: 10.3390/mi11020187.

本文引用的文献

1
On-chip diamagnetic repulsion in continuous flow.
Sci Technol Adv Mater. 2009 May 22;10(1):014611. doi: 10.1088/1468-6996/10/1/014611. eCollection 2009 Feb.
2
On-chip magnetophoretic isolation of CD4 + T cells from blood.
Biomicrofluidics. 2013 Sep 11;7(5):54106. doi: 10.1063/1.4821628. eCollection 2013.
3
Continuous sheath-free magnetic separation of particles in a U-shaped microchannel.
Biomicrofluidics. 2012 Oct 31;6(4):44106. doi: 10.1063/1.4765335. eCollection 2012.
4
Microfluidic: an innovative tool for efficient cell sorting.
Methods. 2012 Jul;57(3):297-307. doi: 10.1016/j.ymeth.2012.07.002. Epub 2012 Jul 11.
5
On-chip bioanalysis with magnetic particles.
Curr Opin Chem Biol. 2012 Aug;16(3-4):436-43. doi: 10.1016/j.cbpa.2012.05.181. Epub 2012 Jun 7.
6
Rare Cell Capture in Microfluidic Devices.
Chem Eng Sci. 2011 Apr 1;66(7):1508-1522. doi: 10.1016/j.ces.2010.09.012.
7
Continuous microfluidic DNA extraction using phase-transfer magnetophoresis.
Lab Chip. 2010 Dec 7;10(23):3284-90. doi: 10.1039/c0lc00129e. Epub 2010 Oct 11.
8
Microfluidics for cell separation.
Med Biol Eng Comput. 2010 Oct;48(10):999-1014. doi: 10.1007/s11517-010-0611-4. Epub 2010 Apr 23.
9
Six-stage cascade paramagnetic mode magnetophoretic separation system for human blood samples.
Biomed Microdevices. 2010 Aug;12(4):637-45. doi: 10.1007/s10544-010-9416-3.
10
Mobile magnetic particles as solid-supports for rapid surface-based bioanalysis in continuous flow.
Lab Chip. 2009 Nov 7;9(21):3110-7. doi: 10.1039/b904724g. Epub 2009 Aug 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验