Suppr超能文献

高维图形模型的正则化选择稳定性方法(StARS)

Stability Approach to Regularization Selection (StARS) for High Dimensional Graphical Models.

作者信息

Liu Han, Roeder Kathryn, Wasserman Larry

机构信息

Carnegie Mellon University, Pittsburgh, PA 15213.

出版信息

Adv Neural Inf Process Syst. 2010 Dec 31;24(2):1432-1440.

Abstract

A challenging problem in estimating high-dimensional graphical models is to choose the regularization parameter in a data-dependent way. The standard techniques include -fold cross-validation (-CV), Akaike information criterion (AIC), and Bayesian information criterion (BIC). Though these methods work well for low-dimensional problems, they are not suitable in high dimensional settings. In this paper, we present StARS: a new stability-based method for choosing the regularization parameter in high dimensional inference for undirected graphs. The method has a clear interpretation: we use the least amount of regularization that simultaneously makes a graph sparse and replicable under random sampling. This interpretation requires essentially no conditions. Under mild conditions, we show that StARS is partially sparsistent in terms of graph estimation: i.e. with high probability, all the true edges will be included in the selected model even when the graph size diverges with the sample size. Empirically, the performance of StARS is compared with the state-of-the-art model selection procedures, including -CV, AIC, and BIC, on both synthetic data and a real microarray dataset. StARS outperforms all these competing procedures.

摘要

估计高维图形模型时一个具有挑战性的问题是以数据依赖的方式选择正则化参数。标准技术包括K折交叉验证(K-CV)、赤池信息准则(AIC)和贝叶斯信息准则(BIC)。尽管这些方法在低维问题上效果良好,但它们不适用于高维情况。在本文中,我们提出了StARS:一种基于稳定性的新方法,用于在无向图的高维推断中选择正则化参数。该方法有一个清晰的解释:我们使用最少的正则化,使得在随机抽样下,图既稀疏又可复制。这种解释基本上不需要条件。在温和条件下,我们表明StARS在图估计方面部分是稀疏一致的:即,即使图的大小随样本大小发散,所有真实边也将以高概率包含在所选模型中。从经验上看,在合成数据和真实微阵列数据集上,将StARS的性能与包括K-CV、AIC和BIC在内的现有最佳模型选择程序进行了比较。StARS优于所有这些竞争程序。

相似文献

2
Stability Approach to Regularization Selection for Reduced-Rank Regression.降秩回归正则化选择的稳定性方法
J Comput Graph Stat. 2023;32(3):974-984. doi: 10.1080/10618600.2022.2119986. Epub 2022 Oct 14.
3
On Penalty Parameter Selection for Estimating Network Models.关于网络模型估计中惩罚参数选择的研究。
Multivariate Behav Res. 2021 Mar-Apr;56(2):288-302. doi: 10.1080/00273171.2019.1672516. Epub 2019 Nov 1.
6
The cross-validated AUC for MCP-logistic regression with high-dimensional data.高维数据下 MCP-logistic 回归的交叉验证 AUC。
Stat Methods Med Res. 2013 Oct;22(5):505-18. doi: 10.1177/0962280211428385. Epub 2011 Nov 28.

引用本文的文献

6
Kernel generalized least squares regression for network-structured data.用于网络结构数据的核广义最小二乘回归
PLoS One. 2025 May 30;20(5):e0324087. doi: 10.1371/journal.pone.0324087. eCollection 2025.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验