Suppr超能文献

通过 l1 惩罚实现稳健的高斯图形模型。

Robust Gaussian graphical modeling via l1 penalization.

作者信息

Sun Hokeun, Li Hongzhe

机构信息

Department of Biostatistics and Epidemiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.

出版信息

Biometrics. 2012 Dec;68(4):1197-206. doi: 10.1111/j.1541-0420.2012.01785.x. Epub 2012 Sep 28.

Abstract

Gaussian graphical models have been widely used as an effective method for studying the conditional independency structure among genes and for constructing genetic networks. However, gene expression data typically have heavier tails or more outlying observations than the standard Gaussian distribution. Such outliers in gene expression data can lead to wrong inference on the dependency structure among the genes. We propose a l(1) penalized estimation procedure for the sparse Gaussian graphical models that is robustified against possible outliers. The likelihood function is weighted according to how the observation is deviated, where the deviation of the observation is measured based on its own likelihood. An efficient computational algorithm based on the coordinate gradient descent method is developed to obtain the minimizer of the negative penalized robustified-likelihood, where nonzero elements of the concentration matrix represents the graphical links among the genes. After the graphical structure is obtained, we re-estimate the positive definite concentration matrix using an iterative proportional fitting algorithm. Through simulations, we demonstrate that the proposed robust method performs much better than the graphical Lasso for the Gaussian graphical models in terms of both graph structure selection and estimation when outliers are present. We apply the robust estimation procedure to an analysis of yeast gene expression data and show that the resulting graph has better biological interpretation than that obtained from the graphical Lasso.

摘要

高斯图形模型已被广泛用作研究基因间条件独立性结构和构建遗传网络的有效方法。然而,基因表达数据通常比标准高斯分布具有更重的尾部或更多的异常观测值。基因表达数据中的此类异常值可能导致对基因间依赖结构的错误推断。我们为稀疏高斯图形模型提出了一种(l(1))惩罚估计程序,该程序对可能的异常值具有鲁棒性。似然函数根据观测值的偏离程度进行加权,其中观测值的偏离是基于其自身的似然性来衡量的。开发了一种基于坐标梯度下降法的高效计算算法,以获得负惩罚鲁棒化似然的最小值,其中浓度矩阵的非零元素表示基因间的图形链接。在获得图形结构后,我们使用迭代比例拟合算法重新估计正定浓度矩阵。通过模拟,我们证明了在存在异常值的情况下,就图形结构选择和估计而言,所提出的鲁棒方法在高斯图形模型方面比图形拉索方法表现得好得多。我们将鲁棒估计程序应用于酵母基因表达数据的分析,并表明所得图形比从图形拉索方法获得的图形具有更好的生物学解释。

相似文献

1
Robust Gaussian graphical modeling via l1 penalization.通过 l1 惩罚实现稳健的高斯图形模型。
Biometrics. 2012 Dec;68(4):1197-206. doi: 10.1111/j.1541-0420.2012.01785.x. Epub 2012 Sep 28.
4
ℓ 1-Penalized censored Gaussian graphical model.L1 惩罚截断高斯图形模型。
Biostatistics. 2020 Apr 1;21(2):e1-e16. doi: 10.1093/biostatistics/kxy043.

引用本文的文献

4
Selection and estimation for mixed graphical models.混合图形模型的选择与估计
Biometrika. 2015 Mar;102(1):47-64. doi: 10.1093/biomet/asu051. Epub 2014 Dec 24.

本文引用的文献

1
High-Dimensional Heteroscedastic Regression with an Application to eQTL Data Analysis.用于eQTL数据分析的高维异方差回归
Biometrics. 2012 Mar;68(1):316-326. doi: 10.1111/j.1541-0420.2011.01652.x. Epub 2011 Aug 12.
2
Sparse Regulatory Networks.稀疏调控网络
Ann Appl Stat. 2010 Jun;4(2):663-686. doi: 10.1214/10-aoas350.
5
Sparse inverse covariance estimation with the graphical lasso.使用图模型选择法进行稀疏逆协方差估计。
Biostatistics. 2008 Jul;9(3):432-41. doi: 10.1093/biostatistics/kxm045. Epub 2007 Dec 12.
8
The landscape of genetic complexity across 5,700 gene expression traits in yeast.酵母中5700个基因表达性状的遗传复杂性全景。
Proc Natl Acad Sci U S A. 2005 Feb 1;102(5):1572-7. doi: 10.1073/pnas.0408709102. Epub 2005 Jan 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验