Suppr超能文献

解析欧洲冬小麦(Triticum aestivum L.)赤霉病抗性遗传结构及预测其变异的潜力与局限

Potential and limits to unravel the genetic architecture and predict the variation of Fusarium head blight resistance in European winter wheat (Triticum aestivum L.).

作者信息

Jiang Y, Zhao Y, Rodemann B, Plieske J, Kollers S, Korzun V, Ebmeyer E, Argillier O, Hinze M, Ling J, Röder M S, Ganal M W, Mette M F, Reif J C

机构信息

Department of Cytogenetics and Genome Analysis, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany.

Julius Kühn Institute, Braunschweig, Germany.

出版信息

Heredity (Edinb). 2015 Mar;114(3):318-26. doi: 10.1038/hdy.2014.104. Epub 2014 Nov 12.

Abstract

Genome-wide mapping approaches in diverse populations are powerful tools to unravel the genetic architecture of complex traits. The main goals of our study were to investigate the potential and limits to unravel the genetic architecture and to identify the factors determining the accuracy of prediction of the genotypic variation of Fusarium head blight (FHB) resistance in wheat (Triticum aestivum L.) based on data collected with a diverse panel of 372 European varieties. The wheat lines were phenotyped in multi-location field trials for FHB resistance and genotyped with 782 simple sequence repeat (SSR) markers, and 9k and 90k single-nucleotide polymorphism (SNP) arrays. We applied genome-wide association mapping in combination with fivefold cross-validations and observed surprisingly high accuracies of prediction for marker-assisted selection based on the detected quantitative trait loci (QTLs). Using a random sample of markers not selected for marker-trait associations revealed only a slight decrease in prediction accuracy compared with marker-based selection exploiting the QTL information. The same picture was confirmed in a simulation study, suggesting that relatedness is a main driver of the accuracy of prediction in marker-assisted selection of FHB resistance. When the accuracy of prediction of three genomic selection models was contrasted for the three marker data sets, no significant differences in accuracies among marker platforms and genomic selection models were observed. Marker density impacted the accuracy of prediction only marginally. Consequently, genomic selection of FHB resistance can be implemented most cost-efficiently based on low- to medium-density SNP arrays.

摘要

在不同群体中进行全基因组图谱绘制方法是揭示复杂性状遗传结构的有力工具。我们研究的主要目标是基于用372个欧洲品种的多样化面板收集的数据,研究揭示小麦(普通小麦)赤霉病(FHB)抗性基因型变异的遗传结构的潜力和局限性,并确定决定预测准确性的因素。这些小麦品系在多地点田间试验中进行了FHB抗性表型分析,并用782个简单序列重复(SSR)标记、9k和90k单核苷酸多态性(SNP)阵列进行了基因分型。我们将全基因组关联图谱绘制与五重交叉验证相结合,并观察到基于检测到的数量性状位点(QTL)进行标记辅助选择的预测准确性出奇地高。使用未选择用于标记-性状关联的标记随机样本显示,与利用QTL信息的基于标记的选择相比,预测准确性仅略有下降。在一项模拟研究中也证实了同样的情况,这表明亲缘关系是FHB抗性标记辅助选择中预测准确性的主要驱动因素。当对比三个标记数据集的三种基因组选择模型的预测准确性时,未观察到标记平台和基因组选择模型之间在准确性上有显著差异。标记密度对预测准确性的影响很小。因此,基于中低密度SNP阵列可以最经济高效地实施FHB抗性的基因组选择。

相似文献

8
Molecular Mapping of Fusarium Head Blight Resistance in the Spring Wheat Line ND2710.小麦 ND2710 中赤霉病抗性的分子图谱。
Phytopathology. 2018 Aug;108(8):972-979. doi: 10.1094/PHYTO-12-17-0392-R. Epub 2018 Jun 29.

引用本文的文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验