Kojer Kerstin, Peleh Valentina, Calabrese Gaetano, Herrmann Johannes M, Riemer Jan
Cellular Biochemistry, University of Kaiserslautern, 67663 Kaiserslautern, Germany.
Cell Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany.
Mol Biol Cell. 2015 Jan 15;26(2):195-204. doi: 10.1091/mbc.E14-10-1422. Epub 2014 Nov 12.
The mitochondrial intermembrane space (IMS) harbors an oxidizing machinery that drives import and folding of small cysteine-containing proteins without targeting signals. The main component of this pathway is the oxidoreductase Mia40, which introduces disulfides into its substrates. We recently showed that the IMS glutathione pool is maintained as reducing as that of the cytosol. It thus remained unclear how equilibration of protein disulfides with the IMS glutathione pool is prevented in order to allow oxidation-driven protein import. Here we demonstrate the presence of glutaredoxins in the IMS and show that limiting amounts of these glutaredoxins provide a kinetic barrier to prevent the thermodynamically feasible reduction of Mia40 substrates by the IMS glutathione pool. Moreover, they allow Mia40 to exist in a predominantly oxidized state. Consequently, overexpression of glutaredoxin 2 in the IMS results in a more reduced Mia40 redox state and a delay in oxidative folding and mitochondrial import of different Mia40 substrates. Our findings thus indicate that carefully balanced glutaredoxin amounts in the IMS ensure efficient oxidative folding in the reducing environment of this compartment.
线粒体膜间隙(IMS)含有一种氧化机制,可驱动无靶向信号的含小半胱氨酸蛋白的导入和折叠。该途径的主要成分是氧化还原酶Mia40,它将二硫键引入其底物中。我们最近发现,IMS中的谷胱甘肽池保持与细胞质一样的还原状态。因此,尚不清楚如何防止蛋白质二硫键与IMS谷胱甘肽池达到平衡,以允许氧化驱动的蛋白质导入。在这里,我们证明了IMS中存在谷氧还蛋白,并表明这些谷氧还蛋白的有限量提供了一个动力学屏障,以防止IMS谷胱甘肽池对Mia40底物进行热力学上可行的还原。此外,它们使Mia40主要以氧化状态存在。因此,IMS中谷氧还蛋白2的过表达导致Mia40氧化还原状态更加还原,并延迟不同Mia40底物的氧化折叠和线粒体导入。因此,我们的研究结果表明,IMS中精心平衡的谷氧还蛋白量可确保在该区室的还原环境中进行有效的氧化折叠。