Suppr超能文献

特邀评论:那种相互作用(在我的社区中)有多大——以及朝着哪个方向?

Invited commentary: How big is that interaction (in my community)--and in which direction?

作者信息

Panagiotou Orestis A, Wacholder Sholom

出版信息

Am J Epidemiol. 2014 Dec 15;180(12):1150-8. doi: 10.1093/aje/kwu279. Epub 2014 Nov 13.

Abstract

In an accompanying article, Turner et al. (Am J Epidemiol. 2014;180(12):1145-1149) compare the joint effects of smoking and air pollution to make inferences about the reduction in lung cancer mortality achieved when reducing each exposure separately and when reducing both together. In this commentary, we use first principles to quantify the difference between the risk or mortality reduction obtained from reducing each of 2 exposures together and the sum of the risk differences obtained from reducing the 2 exposures separately. Metrics of the impact of joint effects or comparisons of joint effects presented in units of absolute risk, such as Rothman's I, can provide more meaningful quantitative measures of public health impact than unitless metrics (e.g., ratios) and standardized metrics (e.g., the population attributable fraction) of potential interventions for reducing smoking and air pollution exposure. In particular, the venerable attributable community risk metric can provide an estimate of the community impact of such interventions in units of absolute risk. A spreadsheet we provide demonstrates the calculation of the various metrics for hypothetical data similar to those reported by Turner et al. Using algebra, graphics, and examples, we show that positive interaction, or synergy, on the additive scale implies that the impact on risk reduction from a program that applies both interventions will be lesser than the sum of the impacts of the separate interventions.

摘要

在一篇随附文章中,特纳等人(《美国流行病学杂志》。2014年;180(12):1145 - 1149)比较了吸烟和空气污染的联合效应,以推断分别减少每种暴露以及同时减少两种暴露时肺癌死亡率的降低情况。在这篇评论中,我们运用基本原理来量化同时减少两种暴露之一所获得的风险或死亡率降低与分别减少这两种暴露所获得的风险差异之和之间的差异。以绝对风险为单位呈现的联合效应影响度量或联合效应比较,例如罗斯曼的I,相较于用于减少吸烟和空气污染暴露的潜在干预措施的无量纲度量(例如比率)和标准化度量(例如人群归因分数),可以提供更有意义的公共卫生影响定量指标。特别是,备受尊崇的可归因社区风险度量可以以绝对风险为单位估计此类干预措施对社区的影响。我们提供的一个电子表格展示了针对与特纳等人报告的数据类似的假设数据计算各种指标的过程。通过代数、图形和示例,我们表明在相加尺度上的正向交互作用或协同作用意味着,同时应用两种干预措施的项目对风险降低的影响将小于单独干预措施影响的总和。

相似文献

1
Invited commentary: How big is that interaction (in my community)--and in which direction?
Am J Epidemiol. 2014 Dec 15;180(12):1150-8. doi: 10.1093/aje/kwu279. Epub 2014 Nov 13.
3
6
Outdoor air pollution and lung cancer.
Environ Health Perspect. 2000 Aug;108 Suppl 4(Suppl 4):743-50. doi: 10.1289/ehp.00108s4743.
9
Air Pollution, Genetic Factors, and the Risk of Lung Cancer: A Prospective Study in the UK Biobank.
Am J Respir Crit Care Med. 2021 Oct 1;204(7):817-825. doi: 10.1164/rccm.202011-4063OC.

引用本文的文献

1
Humidity's Role in Heat-Related Health Outcomes: A Heated Debate.
Environ Health Perspect. 2023 May;131(5):55001. doi: 10.1289/EHP11807. Epub 2023 May 31.
3
Inferential challenges when assessing racial/ethnic health disparities in environmental research.
Environ Health. 2021 Jan 12;20(1):7. doi: 10.1186/s12940-020-00689-5.
6
How do we assess a racial disparity in health? Distribution, interaction, and interpretation in epidemiological studies.
Ann Epidemiol. 2019 Jan;29:1-7. doi: 10.1016/j.annepidem.2018.09.007. Epub 2018 Sep 29.
7
One Author Replies.
Am J Epidemiol. 2016 May 15;183(10):958-9. doi: 10.1093/aje/kww036. Epub 2016 Apr 13.

本文引用的文献

2
A general binomial regression model to estimate standardized risk differences from binary response data.
Stat Med. 2013 Feb 28;32(5):808-21. doi: 10.1002/sim.5553. Epub 2012 Aug 2.
3
The impact of a prevention effort on the community.
Epidemiology. 2005 Jan;16(1):1-3. doi: 10.1097/01.ede.0000147633.09891.16.
4
Interaction as departure from additivity in case-control studies: a cautionary note.
Am J Epidemiol. 2003 Aug 1;158(3):251-8. doi: 10.1093/aje/kwg113.
5
The essential tension between absolute and relative causality.
Am J Public Health. 2001 Mar;91(3):355-7. doi: 10.2105/ajph.91.3.355.
6
Prevention for multifactorial diseases.
Am J Epidemiol. 1980 Sep;112(3):409-16. doi: 10.1093/oxfordjournals.aje.a113007.
7
Synergy and antagonism in cause-effect relationships.
Am J Epidemiol. 1974 Jun;99(6):385-8. doi: 10.1093/oxfordjournals.aje.a121626.
8
The estimation of synergy or antagonism.
Am J Epidemiol. 1976 May;103(5):506-11. doi: 10.1093/oxfordjournals.aje.a112252.
9
Synergism and interaction: are they equivalent?
Am J Epidemiol. 1979 Jul;110(1):99-100. doi: 10.1093/oxfordjournals.aje.a112793.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验