Suppr超能文献

一种用于从二项反应数据中估计标准化风险差异的通用二项式回归模型。

A general binomial regression model to estimate standardized risk differences from binary response data.

机构信息

Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, U.S.A.

出版信息

Stat Med. 2013 Feb 28;32(5):808-21. doi: 10.1002/sim.5553. Epub 2012 Aug 2.

Abstract

Estimates of absolute risks and risk differences are necessary for evaluating the clinical and population impact of biomedical research findings. We have developed a linear-expit regression model (LEXPIT) to incorporate linear and nonlinear risk effects to estimate absolute risk from studies of a binary outcome. The LEXPIT is a generalization of both the binomial linear and logistic regression models. The coefficients of the LEXPIT linear terms estimate adjusted risk differences, whereas the exponentiated nonlinear terms estimate residual odds ratios. The LEXPIT could be particularly useful for epidemiological studies of risk association, where adjustment for multiple confounding variables is common. We present a constrained maximum likelihood estimation algorithm that ensures the feasibility of risk estimates of the LEXPIT model and describe procedures for defining the feasible region of the parameter space, judging convergence, and evaluating boundary cases. Simulations demonstrate that the methodology is computationally robust and yields feasible, consistent estimators. We applied the LEXPIT model to estimate the absolute 5-year risk of cervical precancer or cancer associated with different Pap and human papillomavirus test results in 167,171 women undergoing screening at Kaiser Permanente Northern California. The LEXPIT model found an increased risk due to abnormal Pap test in human papillomavirus-negative that was not detected with logistic regression. Our R package blm provides free and easy-to-use software for fitting the LEXPIT model.

摘要

估计绝对风险和风险差异对于评估生物医学研究结果的临床和人群影响是必要的。我们开发了一种线性指数回归模型(LEXPIT),将线性和非线性风险效应纳入其中,以从二项结局研究中估计绝对风险。LEXPIT 是二项式线性和逻辑回归模型的推广。LEXPIT 线性项的系数估计调整后的风险差异,而指数非线性项估计剩余的比值比。LEXPIT 对于风险关联的流行病学研究可能特别有用,因为在这种研究中,对多个混杂变量进行调整是常见的。我们提出了一种受约束的最大似然估计算法,该算法确保了 LEXPIT 模型风险估计的可行性,并描述了定义参数空间可行区域、判断收敛和评估边界情况的程序。模拟表明,该方法在计算上是稳健的,并产生可行的、一致的估计值。我们将 LEXPIT 模型应用于估计在 Kaiser Permanente Northern California 接受筛查的 167171 名女性中,不同的 Pap 和人乳头瘤病毒检测结果与宫颈癌前病变或癌症相关的 5 年绝对风险。LEXPIT 模型发现,在人乳头瘤病毒阴性的情况下,由于异常的 Pap 检测而导致的风险增加,这是逻辑回归无法检测到的。我们的 R 包 blm 提供了免费且易于使用的软件,用于拟合 LEXPIT 模型。

相似文献

1
A general binomial regression model to estimate standardized risk differences from binary response data.
Stat Med. 2013 Feb 28;32(5):808-21. doi: 10.1002/sim.5553. Epub 2012 Aug 2.
3
Five-year risks of CIN 3+ and cervical cancer among women who test Pap-negative but are HPV-positive.
J Low Genit Tract Dis. 2013 Apr;17(5 Suppl 1):S56-63. doi: 10.1097/LGT.0b013e318285437b.
4
Five-year risks of CIN 3+ and cervical cancer among women with HPV-positive and HPV-negative high-grade Pap results.
J Low Genit Tract Dis. 2013 Apr;17(5 Suppl 1):S50-5. doi: 10.1097/LGT.0b013e3182854282.
7
Similar Risk Patterns After Cervical Screening in Two Large U.S. Populations: Implications for Clinical Guidelines.
Obstet Gynecol. 2016 Dec;128(6):1248-1257. doi: 10.1097/AOG.0000000000001721.
8
Follow-up testing after colposcopy: five-year risk of CIN 2+ after a colposcopic diagnosis of CIN 1 or less.
J Low Genit Tract Dis. 2013 Apr;17(5 Suppl 1):S69-77. doi: 10.1097/LGT.0b013e31828543b1.
9
Five-year risks of CIN 3+ and cervical cancer among women with HPV testing of ASC-US Pap results.
J Low Genit Tract Dis. 2013 Apr;17(5 Suppl 1):S36-42. doi: 10.1097/LGT.0b013e3182854253.
10

引用本文的文献

2
Introducing riskCommunicator: An R package to obtain interpretable effect estimates for public health.
PLoS One. 2022 Jul 18;17(7):e0265368. doi: 10.1371/journal.pone.0265368. eCollection 2022.
4
Considerations when assessing heterogeneity of treatment effect in patient-centered outcomes research.
J Clin Epidemiol. 2018 Aug;100:22-31. doi: 10.1016/j.jclinepi.2018.04.005. Epub 2018 Apr 11.
5
Integration of postpartum healthcare services for HIV-infected women and their infants in South Africa: A randomised controlled trial.
PLoS Med. 2018 Mar 30;15(3):e1002547. doi: 10.1371/journal.pmed.1002547. eCollection 2018 Mar.
6
Poor glycaemic control and its metabolic and demographic risk factors in a Malaysian community-based study.
Int J Public Health. 2018 Mar;63(2):193-202. doi: 10.1007/s00038-017-1072-4. Epub 2018 Jan 25.
7
Do sex hormones or hormone therapy modify the relation of n-3 fatty acids with incident depressive symptoms in postmenopausal women? The MESA Study.
Psychoneuroendocrinology. 2017 Jan;75:26-35. doi: 10.1016/j.psyneuen.2016.10.003. Epub 2016 Oct 14.
8
Commentary: On Effect Measures, Heterogeneity, and the Laws of Nature.
Epidemiology. 2015 Sep;26(5):710-3. doi: 10.1097/EDE.0000000000000359.
9
Invited commentary: How big is that interaction (in my community)--and in which direction?
Am J Epidemiol. 2014 Dec 15;180(12):1150-8. doi: 10.1093/aje/kwu279. Epub 2014 Nov 13.
10
Time to smoke first morning cigarette and lung cancer in a case-control study.
J Natl Cancer Inst. 2014 Jun 19;106(6):dju118. doi: 10.1093/jnci/dju118. Print 2014 Jun.

本文引用的文献

2
Linear or Nonlinear? Automatic Structure Discovery for Partially Linear Models.
J Am Stat Assoc. 2011 Sep 1;106(495):1099-1112. doi: 10.1198/jasa.2011.tm10281.
6
Efficacy of HPV DNA testing with cytology triage and/or repeat HPV DNA testing in primary cervical cancer screening.
J Natl Cancer Inst. 2009 Jan 21;101(2):88-99. doi: 10.1093/jnci/djn444. Epub 2009 Jan 13.
7
A modified least-squares regression approach to the estimation of risk difference.
Am J Epidemiol. 2007 Dec 1;166(11):1337-44. doi: 10.1093/aje/kwm223. Epub 2007 Sep 12.
8
A deficiency of the odds ratio as a measure of effect size.
Stat Med. 2006 Dec 30;25(24):4235-40. doi: 10.1002/sim.2683.
9
Standard errors for attributable risk for simple and complex sample designs.
Biometrics. 2005 Sep;61(3):847-55. doi: 10.1111/j.1541-0420.2005.00355.x.
10
Easy SAS calculations for risk or prevalence ratios and differences.
Am J Epidemiol. 2005 Aug 1;162(3):199-200. doi: 10.1093/aje/kwi188. Epub 2005 Jun 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验