Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, U.S.A.
Stat Med. 2013 Feb 28;32(5):808-21. doi: 10.1002/sim.5553. Epub 2012 Aug 2.
Estimates of absolute risks and risk differences are necessary for evaluating the clinical and population impact of biomedical research findings. We have developed a linear-expit regression model (LEXPIT) to incorporate linear and nonlinear risk effects to estimate absolute risk from studies of a binary outcome. The LEXPIT is a generalization of both the binomial linear and logistic regression models. The coefficients of the LEXPIT linear terms estimate adjusted risk differences, whereas the exponentiated nonlinear terms estimate residual odds ratios. The LEXPIT could be particularly useful for epidemiological studies of risk association, where adjustment for multiple confounding variables is common. We present a constrained maximum likelihood estimation algorithm that ensures the feasibility of risk estimates of the LEXPIT model and describe procedures for defining the feasible region of the parameter space, judging convergence, and evaluating boundary cases. Simulations demonstrate that the methodology is computationally robust and yields feasible, consistent estimators. We applied the LEXPIT model to estimate the absolute 5-year risk of cervical precancer or cancer associated with different Pap and human papillomavirus test results in 167,171 women undergoing screening at Kaiser Permanente Northern California. The LEXPIT model found an increased risk due to abnormal Pap test in human papillomavirus-negative that was not detected with logistic regression. Our R package blm provides free and easy-to-use software for fitting the LEXPIT model.
估计绝对风险和风险差异对于评估生物医学研究结果的临床和人群影响是必要的。我们开发了一种线性指数回归模型(LEXPIT),将线性和非线性风险效应纳入其中,以从二项结局研究中估计绝对风险。LEXPIT 是二项式线性和逻辑回归模型的推广。LEXPIT 线性项的系数估计调整后的风险差异,而指数非线性项估计剩余的比值比。LEXPIT 对于风险关联的流行病学研究可能特别有用,因为在这种研究中,对多个混杂变量进行调整是常见的。我们提出了一种受约束的最大似然估计算法,该算法确保了 LEXPIT 模型风险估计的可行性,并描述了定义参数空间可行区域、判断收敛和评估边界情况的程序。模拟表明,该方法在计算上是稳健的,并产生可行的、一致的估计值。我们将 LEXPIT 模型应用于估计在 Kaiser Permanente Northern California 接受筛查的 167171 名女性中,不同的 Pap 和人乳头瘤病毒检测结果与宫颈癌前病变或癌症相关的 5 年绝对风险。LEXPIT 模型发现,在人乳头瘤病毒阴性的情况下,由于异常的 Pap 检测而导致的风险增加,这是逻辑回归无法检测到的。我们的 R 包 blm 提供了免费且易于使用的软件,用于拟合 LEXPIT 模型。