De Tommasi E, De Luca A C, Lavanga L, Dardano P, De Stefano M, De Stefano L, Langella C, Rendina I, Dholakia K, Mazilu M
Opt Express. 2014 Nov 3;22(22):27214-27. doi: 10.1364/OE.22.027214.
Evolution shows that photonic structures are a constituent part of many animals and flora. These elements produce structural color and are useful in predator-prey interactions between animals and in the exploitation of light for photosynthetic organisms. In particular, diatoms have evolved patterned hydrated silica external valves able to confine light with extraordinary efficiency. Their evolution was probably guided by the necessity to survive in harsh conditions of sunlight deprivation. Here, we exploit such diatom valves, in conjunction with structured illumination, to realize a biological super-resolving lens to achieve sub-diffractive focusing in the far field. More precisely, we consider a single diatom valve of Arachnoidiscus genus which shows symmetries and fine features. By characterizing and using the transmission properties of this valve using the optical eigenmode technique, we are able to confine light to a tiny spot with unprecedented precision in terms of resolution limit ratio, corresponding in this case to 0.21λ/NA.
进化表明,光子结构是许多动物和植物的组成部分。这些元素产生结构色,在动物的捕食者 - 猎物相互作用以及光合生物对光的利用中发挥作用。特别是,硅藻进化出了有图案的水合二氧化硅外部瓣膜,能够以非凡的效率限制光线。它们的进化可能是由在阳光匮乏的恶劣条件下生存的必要性所引导的。在这里,我们利用这种硅藻瓣膜,结合结构照明,实现了一种生物超分辨透镜,以在远场实现亚衍射聚焦。更确切地说,我们考虑蛛形藻属的单个硅藻瓣膜,它具有对称性和精细特征。通过使用光学本征模技术表征和利用该瓣膜的传输特性,我们能够以前所未有的精度将光线限制在一个微小的光斑中,就分辨率极限比而言,在这种情况下对应于0.21λ/NA。