Suppr超能文献

TLR5与NLRC4在抵抗铜绿假单胞菌的肺部黏膜保护性免疫中的冗余和协同相互作用。

Redundant and cooperative interactions between TLR5 and NLRC4 in protective lung mucosal immunity against Pseudomonas aeruginosa.

作者信息

Tolle Leslie, Yu Fu-shin, Kovach Melissa A, Ballinger Megan N, Newstead Michael W, Zeng Xianying, Nunez Gabriel, Standiford Theodore J

机构信息

Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Michigan Medical Center, Ann Arbor, Mich., USA.

出版信息

J Innate Immun. 2015;7(2):177-86. doi: 10.1159/000367790. Epub 2014 Nov 12.

Abstract

Flagellin is the major structural component of flagella expressed by Pseudomonas aeruginosa (PA) and other bacteria. This protein has been shown to activate the Toll-like receptor TLR5 and the Nod-like receptor Nlrc4/Ipaf, culminating in the expression of innate cytokines and antimicrobial molecules. In this study, we tested the hypothesis that TLR5 and Nlrc4 in combination are required for maximal protective lung innate mucosal immunity against PA. To test this hypothesis, we compared innate immune responses in wild-type (WT) C57B6 mice challenged with PA intratracheally to those observed in mice genetically deficient in TLR5 (TLR5(-/-)) or Nlrc4 (Nlrc4(-/-)) alone or in combination (TLR5/Nlrc4(-/-)). As compared to WT, TLR5(-/-) and Nlrc4(-/-) mice, we observed a significant increase in mortality in TLR5/Nlrc4(-/-) mice, which was associated with a >5,000-fold increase in lung PA colony-forming units and systemic bacterial dissemination. The increased mortality observed in double-deficient mice was not attributable to differences in lung leukocyte influx or lung injury responses. Levels of biologically active IL-1β and IL-18 were reduced in the bronchoalveolar lavage fluid from PA-infected Nlrc4(-/-) and TLR5/Nlrc4(-/-) but not TLR5(-/-) mice, indicating the requirement for Nlrc4-dependent caspase-1 activation. Similarly, decreased production of biologically active IL-1β and activation of caspase-1 was observed in PA-stimulated pulmonary macrophages isolated from Nlrc4(-/-) and TLR5/Nlrc4(-/-) but not TLR5(-/-) mice, whereas the expression of iNOS and the production of NO were significantly reduced in cells from double-mutant but not single-mutant mice. Collectively, our findings indicate that TLR5 and Nlrc4 have both unique and redundant roles in lung antibacterial mucosal immunity, and the absence of both pathogen recognition receptors results in an increase in susceptibility to invasive lung infection.

摘要

鞭毛蛋白是铜绿假单胞菌(PA)和其他细菌表达的鞭毛的主要结构成分。该蛋白已被证明可激活Toll样受体TLR5和Nod样受体Nlrc4/Ipaf,最终导致先天性细胞因子和抗菌分子的表达。在本研究中,我们测试了以下假设:TLR5和Nlrc4共同作用对于针对PA的最大程度的肺部先天性黏膜免疫保护是必需的。为了验证这一假设,我们比较了经气管内注射PA攻击的野生型(WT)C57B6小鼠与单独或联合缺乏TLR5(TLR5(-/-))或Nlrc4(Nlrc4(-/-))的基因缺陷小鼠的先天性免疫反应。与WT、TLR5(-/-)和Nlrc4(-/-)小鼠相比,我们观察到TLR5/Nlrc4(-/-)小鼠的死亡率显著增加,这与肺部PA菌落形成单位增加>5000倍以及全身细菌播散有关。在双缺陷小鼠中观察到的死亡率增加并非归因于肺白细胞流入或肺损伤反应的差异。来自PA感染的Nlrc4(-/-)和TLR5/Nlrc4(-/-)但不是TLR5(-/-)小鼠的支气管肺泡灌洗液中生物活性IL-1β和IL-18水平降低,表明需要Nlrc4依赖性半胱天冬酶-1激活。同样,在从Nlrc4(-/-)和TLR5/Nlrc4(-/-)但不是TLR5(-/-)小鼠分离的PA刺激的肺巨噬细胞中观察到生物活性IL-1β的产生减少和半胱天冬酶-1的激活,而在双突变小鼠而非单突变小鼠的细胞中iNOS的表达和NO的产生显著降低。总体而言,我们的研究结果表明,TLR5和Nlrc4在肺部抗菌黏膜免疫中具有独特和冗余的作用,并且两种病原体识别受体的缺失导致对侵袭性肺部感染的易感性增加。

相似文献

2
Pseudomonas aeruginosa type-3 secretion system dampens host defense by exploiting the NLRC4-coupled inflammasome.
Am J Respir Crit Care Med. 2014 Apr 1;189(7):799-811. doi: 10.1164/rccm.201307-1358OC.
3
Critical role for Ipaf in Pseudomonas aeruginosa-induced caspase-1 activation.
Eur J Immunol. 2007 Nov;37(11):3030-9. doi: 10.1002/eji.200737532.
4
A novel pathway for inducible nitric-oxide synthase activation through inflammasomes.
J Biol Chem. 2010 Oct 15;285(42):32087-95. doi: 10.1074/jbc.M110.124297. Epub 2010 Aug 11.
5
TLR5 or NLRC4 is necessary and sufficient for promotion of humoral immunity by flagellin.
Eur J Immunol. 2010 Dec;40(12):3528-34. doi: 10.1002/eji.201040421.
6
Activation of NLRC4 downregulates TLR5-mediated antibody immune responses against flagellin.
Cell Mol Immunol. 2016 Jul;13(4):514-23. doi: 10.1038/cmi.2015.33. Epub 2015 Apr 27.
7
Activation of inflammasome signaling mediates pathology of acute P. aeruginosa pneumonia.
J Clin Invest. 2013 Apr;123(4):1630-7. doi: 10.1172/JCI66142. Epub 2013 Mar 8.
8
NLRC4 inflammasome-mediated production of IL-1β modulates mucosal immunity in the lung against gram-negative bacterial infection.
J Immunol. 2012 Jun 1;188(11):5623-35. doi: 10.4049/jimmunol.1200195. Epub 2012 Apr 30.
9
Inflammasome-dependent pyroptosis and IL-18 protect against Burkholderia pseudomallei lung infection while IL-1β is deleterious.
PLoS Pathog. 2011 Dec;7(12):e1002452. doi: 10.1371/journal.ppat.1002452. Epub 2011 Dec 29.
10
NLRC4 and TLR5 each contribute to host defense in respiratory melioidosis.
PLoS Negl Trop Dis. 2014 Sep 18;8(9):e3178. doi: 10.1371/journal.pntd.0003178. eCollection 2014 Sep.

引用本文的文献

1
Novel broadly reactive monoclonal antibody protects against infection.
Infect Immun. 2025 Jan 31;93(1):e0033024. doi: 10.1128/iai.00330-24. Epub 2024 Dec 13.
2
Flagellum-deficient is more virulent than non-motile but flagellated mutants in a cystic fibrosis mouse model.
Microbiol Spectr. 2024 Oct 3;12(10):e0132524. doi: 10.1128/spectrum.01325-24. Epub 2024 Sep 9.
3
Role of toll-like receptors and nod-like receptors in acute lung infection.
Front Immunol. 2023 Aug 16;14:1249098. doi: 10.3389/fimmu.2023.1249098. eCollection 2023.
5
Mitochondrial Oxidative Stress and "Mito-Inflammation": Actors in the Diseases.
Biomedicines. 2021 Feb 20;9(2):216. doi: 10.3390/biomedicines9020216.
6
Understanding -Host Interactions: The Ongoing Quest for an Efficacious Vaccine.
Cells. 2020 Dec 5;9(12):2617. doi: 10.3390/cells9122617.
7
Mitochondrial Stress Responses and "Mito-Inflammation" in Cystic Fibrosis.
Front Pharmacol. 2020 Sep 30;11:581114. doi: 10.3389/fphar.2020.581114. eCollection 2020.
9
HSC70 regulates cold-induced caspase-1 hyperactivation by an autoinflammation-causing mutant of cytoplasmic immune receptor NLRC4.
Proc Natl Acad Sci U S A. 2019 Oct 22;116(43):21694-21703. doi: 10.1073/pnas.1905261116. Epub 2019 Oct 9.
10
Programmed Cell Death in the Evolutionary Race against Bacterial Virulence Factors.
Cold Spring Harb Perspect Biol. 2020 Feb 3;12(2):a036459. doi: 10.1101/cshperspect.a036459.

本文引用的文献

1
Caspase-1: the inflammasome and beyond.
Innate Immun. 2014 Feb;20(2):115-25. doi: 10.1177/1753425913484374. Epub 2013 May 15.
2
Activation of inflammasome signaling mediates pathology of acute P. aeruginosa pneumonia.
J Clin Invest. 2013 Apr;123(4):1630-7. doi: 10.1172/JCI66142. Epub 2013 Mar 8.
3
Toll-like receptor 5 agonism protects mice from radiation pneumonitis and pulmonary fibrosis.
Asian Pac J Cancer Prev. 2012;13(9):4763-7. doi: 10.7314/apjcp.2012.13.9.4763.
4
NLRC4 inflammasome-mediated production of IL-1β modulates mucosal immunity in the lung against gram-negative bacterial infection.
J Immunol. 2012 Jun 1;188(11):5623-35. doi: 10.4049/jimmunol.1200195. Epub 2012 Apr 30.
5
Immunology: recognition of a unique partner.
Nature. 2011 Sep 28;477(7366):543-4. doi: 10.1038/477543a.
6
The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus.
Nature. 2011 Sep 14;477(7366):596-600. doi: 10.1038/nature10510.
7
Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity.
Nature. 2011 Aug 28;477(7366):592-5. doi: 10.1038/nature10394.
8
TLR5 or NLRC4 is necessary and sufficient for promotion of humoral immunity by flagellin.
Eur J Immunol. 2010 Dec;40(12):3528-34. doi: 10.1002/eji.201040421.
9
A novel pathway for inducible nitric-oxide synthase activation through inflammasomes.
J Biol Chem. 2010 Oct 15;285(42):32087-95. doi: 10.1074/jbc.M110.124297. Epub 2010 Aug 11.
10
Flagellin stimulates protective lung mucosal immunity: role of cathelicidin-related antimicrobial peptide.
J Immunol. 2010 Jul 15;185(2):1142-9. doi: 10.4049/jimmunol.1000509. Epub 2010 Jun 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验