Carbonell-Ballestero Max, Duran-Nebreda Salva, Montañez Raúl, Solé Ricard, Macía Javier, Rodríguez-Caso Carlos
ICREA-Complex Systems Laboratory, Universitat Pompeu Fabra, 08003 Barcelona, Spain Institut de Biologia Evolutiva, CSIC-UPF, Psg. de la Barceloneta 37, 08003 Barcelona, Spain.
ICREA-Complex Systems Laboratory, Universitat Pompeu Fabra, 08003 Barcelona, Spain Institut de Biologia Evolutiva, CSIC-UPF, Psg. de la Barceloneta 37, 08003 Barcelona, Spain Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA.
Nucleic Acids Res. 2014 Dec 16;42(22):14060-9. doi: 10.1093/nar/gku964. Epub 2014 Nov 17.
Within the field of synthetic biology, a rational design of genetic parts should include a causal understanding of their input-output responses-the so-called transfer function-and how to tune them. However, a commonly adopted strategy is to fit data to Hill-shaped curves without considering the underlying molecular mechanisms. Here we provide a novel mathematical formalization that allows prediction of the global behavior of a synthetic device by considering the actual information from the involved biological parts. This is achieved by adopting an enzymology-like framework, where transfer functions are described in terms of their input affinity constant and maximal response. As a proof of concept, we characterize a set of Lux homoserine-lactone-inducible genetic devices with different levels of Lux receptor and signal molecule. Our model fits the experimental results and predicts the impact of the receptor's ribosome-binding site strength, as a tunable parameter that affects gene expression. The evolutionary implications are outlined.
在合成生物学领域,对遗传元件进行合理设计应包括对其输入-输出响应(即所谓的传递函数)以及如何对其进行调节的因果理解。然而,一种普遍采用的策略是将数据拟合到Hill形曲线,而不考虑潜在的分子机制。在这里,我们提供了一种新颖的数学形式化方法,通过考虑所涉及生物元件的实际信息来预测合成装置的全局行为。这是通过采用类似酶学的框架来实现的,其中传递函数根据其输入亲和常数和最大响应来描述。作为概念验证,我们表征了一组具有不同水平Lux受体和信号分子的Lux高丝氨酸内酯诱导型遗传装置。我们的模型拟合了实验结果,并预测了受体核糖体结合位点强度作为影响基因表达的可调参数的影响。概述了其进化意义。