O'Donoghue Patrick, Prat Laure, Kucklick Martin, Schäfer Johannes G, Riedel Katharina, Rinehart Jesse, Söll Dieter, Heinemann Ilka U
Departments of Biochemistry and Chemistry, The University of Western Ontario, London, ON N6A 5C1, Canada;
Departments of Molecular Biophysics and Biochemistry.
Proc Natl Acad Sci U S A. 2014 Dec 2;111(48):17206-11. doi: 10.1073/pnas.1420193111. Epub 2014 Nov 17.
Expanding the genetic code is an important aim of synthetic biology, but some organisms developed naturally expanded genetic codes long ago over the course of evolution. Less than 1% of all sequenced genomes encode an operon that reassigns the stop codon UAG to pyrrolysine (Pyl), a genetic code variant that results from the biosynthesis of Pyl-tRNA(Pyl). To understand the selective advantage of genetically encoding more than 20 amino acids, we constructed a markerless tRNA(Pyl) deletion strain of Methanosarcina acetivorans (ΔpylT) that cannot decode UAG as Pyl or grow on trimethylamine. Phenotypic defects in the ΔpylT strain were evident in minimal medium containing methanol. Proteomic analyses of wild type (WT) M. acetivorans and ΔpylT cells identified 841 proteins from >7,000 significant peptides detected by MS/MS. Protein production from UAG-containing mRNAs was verified for 19 proteins. Translation of UAG codons was verified by MS/MS for eight proteins, including identification of a Pyl residue in PylB, which catalyzes the first step of Pyl biosynthesis. Deletion of tRNA(Pyl) globally altered the proteome, leading to >300 differentially abundant proteins. Reduction of the genetic code from 21 to 20 amino acids led to significant down-regulation in translation initiation factors, amino acid metabolism, and methanogenesis from methanol, which was offset by a compensatory (100-fold) up-regulation in dimethyl sulfide metabolic enzymes. The data show how a natural proteome adapts to genetic code reduction and indicate that the selective value of an expanded genetic code is related to carbon source range and metabolic efficiency.
扩展遗传密码是合成生物学的一个重要目标,但一些生物体在进化过程中很早就自然地发展出了扩展的遗传密码。在所有已测序的基因组中,编码一个将终止密码子UAG重新分配给吡咯赖氨酸(Pyl)的操纵子的基因组不到1%,这种遗传密码变体是由Pyl-tRNA(Pyl)的生物合成产生的。为了理解对超过20种氨基酸进行遗传编码的选择优势,我们构建了嗜乙酸甲烷八叠球菌的无标记tRNA(Pyl)缺失菌株(ΔpylT),该菌株无法将UAG解码为Pyl,也不能在三甲胺上生长。在含有甲醇的基本培养基中,ΔpylT菌株的表型缺陷很明显。对野生型(WT)嗜乙酸甲烷八叠球菌和ΔpylT细胞进行蛋白质组分析,从通过MS/MS检测到的7000多个显著肽段中鉴定出841种蛋白质。对19种含UAG的mRNA的蛋白质表达进行了验证。通过MS/MS对8种蛋白质的UAG密码子翻译进行了验证,包括在催化Pyl生物合成第一步的PylB中鉴定出一个Pyl残基。tRNA(Pyl)的缺失全局改变了蛋白质组,导致300多种蛋白质丰度存在差异。将遗传密码从21种氨基酸减少到20种氨基酸导致翻译起始因子、氨基酸代谢以及甲醇产甲烷过程显著下调,这被二甲基硫代谢酶中100倍的补偿性上调所抵消。数据显示了天然蛋白质组如何适应遗传密码的减少,并表明扩展遗传密码的选择价值与碳源范围和代谢效率有关。