Suppr超能文献

吡咯赖氨酰-tRNA 合成酶/tRNA 对及其衍生物在遗传密码扩展中的应用更新。

Update of the Pyrrolysyl-tRNA Synthetase/tRNA Pair and Derivatives for Genetic Code Expansion.

机构信息

College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.

BGI Research-Shenzhen, BGI, Shenzhen, China.

出版信息

J Bacteriol. 2023 Feb 22;205(2):e0038522. doi: 10.1128/jb.00385-22. Epub 2023 Jan 25.

Abstract

The cotranslational incorporation of pyrrolysine (Pyl), the 22nd proteinogenic amino acid, into proteins in response to the UAG stop codon represents an outstanding example of natural genetic code expansion. Genetic encoding of Pyl is conducted by the pyrrolysyl-tRNA synthetase (PylRS) and its cognate tRNA, tRNA. Owing to the high tolerance of PylRS toward diverse amino acid substrates and great orthogonality in various model organisms, the PylRS/tRNA-derived pairs are ideal for genetic code expansion to insert noncanonical amino acids (ncAAs) into proteins of interest. Since the discovery of cellular components involved in the biosynthesis and genetic encoding of Pyl, synthetic biologists have been enthusiastic about engineering PylRS/tRNA-derived pairs to rewrite the genetic code of living cells. Recently, considerable progress has been made in understanding the molecular phylogeny, biochemical properties, and structural features of the PylRS/tRNA pair, guiding its further engineering and optimization. In this review, we cover the basic and updated knowledge of the PylRS/tRNA pair's unique characteristics that make it an outstanding tool for reprogramming the genetic code. In addition, we summarize the recent efforts to create efficient and (mutually) orthogonal PylRS/tRNA-derived pairs for incorporation of diverse ncAAs by genome mining, rational design, and advanced directed evolution methods.

摘要

反密码子 UAG 介导的终止密码子通读使得吡咯赖氨酰-tRNA 合成酶(PylRS)及其对应的 tRNA 可以将吡咯赖氨酸(Pyl)掺入到蛋白质中,这代表了自然遗传密码扩展的一个杰出范例。Pyl 的遗传编码由吡咯赖氨酰-tRNA 合成酶(PylRS)及其对应的 tRNA,tRNA 完成。由于 PylRS 对各种氨基酸底物具有很高的耐受性,并且在各种模式生物中具有很大的正交性,因此 PylRS/tRNA 衍生对是将非天然氨基酸(ncAAs)插入到感兴趣的蛋白质中的理想遗传密码扩展工具。自发现参与 Pyl 生物合成和遗传编码的细胞成分以来,合成生物学家一直热衷于工程化 PylRS/tRNA 衍生对来重写活细胞的遗传密码。最近,人们在理解 PylRS/tRNA 对的分子系统发育、生化特性和结构特征方面取得了相当大的进展,这为其进一步的工程化和优化提供了指导。在这篇综述中,我们涵盖了 PylRS/tRNA 对独特特性的基本和最新知识,这些特性使其成为重新编程遗传密码的杰出工具。此外,我们总结了最近通过基因组挖掘、理性设计和先进的定向进化方法来创造高效和(相互)正交的 PylRS/tRNA 衍生对以掺入各种 ncAAs 的努力。

相似文献

1
Update of the Pyrrolysyl-tRNA Synthetase/tRNA Pair and Derivatives for Genetic Code Expansion.
J Bacteriol. 2023 Feb 22;205(2):e0038522. doi: 10.1128/jb.00385-22. Epub 2023 Jan 25.
2
Ancestral archaea expanded the genetic code with pyrrolysine.
J Biol Chem. 2022 Nov;298(11):102521. doi: 10.1016/j.jbc.2022.102521. Epub 2022 Sep 22.
3
Engineering Pyrrolysine Systems for Genetic Code Expansion and Reprogramming.
Chem Rev. 2024 Oct 9;124(19):11008-11062. doi: 10.1021/acs.chemrev.4c00243. Epub 2024 Sep 5.
4
tRNA: Structure, function, and applications.
RNA Biol. 2018;15(4-5):441-452. doi: 10.1080/15476286.2017.1356561. Epub 2017 Sep 13.
5
Mutually orthogonal pyrrolysyl-tRNA synthetase/tRNA pairs.
Nat Chem. 2018 Aug;10(8):831-837. doi: 10.1038/s41557-018-0052-5. Epub 2018 May 28.
6
Pyrrolysyl-tRNA synthetase: an ordinary enzyme but an outstanding genetic code expansion tool.
Biochim Biophys Acta. 2014 Jun;1844(6):1059-70. doi: 10.1016/j.bbapap.2014.03.002. Epub 2014 Mar 12.
7
An Evolved Methanomethylophilus alvus Pyrrolysyl-tRNA Synthetase/tRNA Pair Is Highly Active and Orthogonal in Mammalian Cells.
Biochemistry. 2019 Feb 5;58(5):387-390. doi: 10.1021/acs.biochem.8b00808. Epub 2018 Sep 27.
8
Pyrrolysyl-tRNA synthetase-tRNA(Pyl) structure reveals the molecular basis of orthogonality.
Nature. 2009 Feb 26;457(7233):1163-7. doi: 10.1038/nature07611. Epub 2008 Dec 31.
10
Rationally evolving tRNAPyl for efficient incorporation of noncanonical amino acids.
Nucleic Acids Res. 2015 Dec 15;43(22):e156. doi: 10.1093/nar/gkv800. Epub 2015 Aug 6.

引用本文的文献

1
Removing redundancy of the NCN codons for maximal sense codon reassignment.
Chem Sci. 2025 Apr 22;16(20):8932-8939. doi: 10.1039/d4sc06740a. eCollection 2025 May 21.
2
Optogenetics with Atomic Precision─A Comprehensive Review of Optical Control of Protein Function through Genetic Code Expansion.
Chem Rev. 2025 Feb 26;125(4):1663-1717. doi: 10.1021/acs.chemrev.4c00224. Epub 2025 Feb 10.
3
Pyrrolysine Aminoacyl-tRNA Synthetase as a Tool for Expanding the Genetic Code.
Int J Mol Sci. 2025 Jan 10;26(2):539. doi: 10.3390/ijms26020539.
4
Directed Evolution of Pyrrolysyl-tRNA Synthetase for the Genetic Incorporation of Two Different Noncanonical Amino Acids in One Protein.
ACS Bio Med Chem Au. 2024 Aug 22;4(5):233-241. doi: 10.1021/acsbiomedchemau.4c00028. eCollection 2024 Oct 16.
5
Noncanonical Amino Acids: Bringing New-to-Nature Functionalities to Biocatalysis.
Chem Rev. 2024 Oct 9;124(19):10877-10923. doi: 10.1021/acs.chemrev.4c00136. Epub 2024 Sep 27.
6
Cellular Site-Specific Incorporation of Noncanonical Amino Acids in Synthetic Biology.
Chem Rev. 2024 Sep 25;124(18):10577-10617. doi: 10.1021/acs.chemrev.3c00938. Epub 2024 Aug 29.
7
Cracking the Code: Reprogramming the Genetic Script in Prokaryotes and Eukaryotes to Harness the Power of Noncanonical Amino Acids.
Chem Rev. 2024 Sep 25;124(18):10281-10362. doi: 10.1021/acs.chemrev.3c00878. Epub 2024 Aug 9.
8
Tuning tRNAs for improved translation.
Front Genet. 2024 Jun 25;15:1436860. doi: 10.3389/fgene.2024.1436860. eCollection 2024.
9
Diversification of Phage-Displayed Peptide Libraries with Noncanonical Amino Acid Mutagenesis and Chemical Modification.
Chem Rev. 2024 May 8;124(9):6051-6077. doi: 10.1021/acs.chemrev.4c00004. Epub 2024 Apr 30.

本文引用的文献

1
Improving the Efficiency and Orthogonality of Genetic Code Expansion.
Biodes Res. 2022 Jun 6;2022:9896125. doi: 10.34133/2022/9896125. eCollection 2022.
2
Recoding of stop codons expands the metabolic potential of two novel Asgardarchaeota lineages.
ISME Commun. 2021 Jun 28;1(1):30. doi: 10.1038/s43705-021-00032-0.
3
Genetically encoded chemical crosslinking of carbohydrate.
Nat Chem. 2023 Jan;15(1):33-42. doi: 10.1038/s41557-022-01059-z. Epub 2022 Oct 10.
4
Unconventional genetic code systems in archaea.
Front Microbiol. 2022 Sep 8;13:1007832. doi: 10.3389/fmicb.2022.1007832. eCollection 2022.
5
Ancestral archaea expanded the genetic code with pyrrolysine.
J Biol Chem. 2022 Nov;298(11):102521. doi: 10.1016/j.jbc.2022.102521. Epub 2022 Sep 22.
9
Directed Evolution of Pyrrolysyl-tRNA Synthetase Generates a Hyperactive and Highly Selective Variant.
Front Mol Biosci. 2022 Mar 9;9:850613. doi: 10.3389/fmolb.2022.850613. eCollection 2022.
10
Efficient Unnatural Protein Production by Pyrrolysyl-tRNA Synthetase With Genetically Fused Solubility Tags.
Front Bioeng Biotechnol. 2021 Dec 23;9:807438. doi: 10.3389/fbioe.2021.807438. eCollection 2021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验