Carlson Hans K, Kuehl Jennifer V, Hazra Amrita B, Justice Nicholas B, Stoeva Magdalena K, Sczesnak Andrew, Mullan Mark R, Iavarone Anthony T, Engelbrektson Anna, Price Morgan N, Deutschbauer Adam M, Arkin Adam P, Coates John D
Energy Biosciences Institute, UC Berkeley, Berkeley, CA, USA.
Physical Biosciences Division, Lawrence Berkeley National Lab, Berkeley, CA, USA.
ISME J. 2015 Jun;9(6):1295-305. doi: 10.1038/ismej.2014.216. Epub 2014 Nov 18.
We investigated perchlorate (ClO(4)(-)) and chlorate (ClO(3)(-)) (collectively (per)chlorate) in comparison with nitrate as potential inhibitors of sulfide (H(2)S) production by mesophilic sulfate-reducing microorganisms (SRMs). We demonstrate the specificity and potency of (per)chlorate as direct SRM inhibitors in both pure cultures and undefined sulfidogenic communities. We demonstrate that (per)chlorate and nitrate are antagonistic inhibitors and resistance is cross-inducible implying that these compounds share at least one common mechanism of resistance. Using tagged-transposon pools we identified genes responsible for sensitivity and resistance in Desulfovibrio alaskensis G20. We found that mutants in Dde_2702 (Rex), a repressor of the central sulfate-reduction pathway were resistant to both (per)chlorate and nitrate. In general, Rex derepresses its regulon in response to increasing intracellular NADH:NAD(+) ratios. In cells in which respiratory sulfate reduction is inhibited, NADH:NAD(+) ratios should increase leading to derepression of the sulfate-reduction pathway. In support of this, in (per)chlorate or nitrate-stressed wild-type G20 we observed higher NADH:NAD(+) ratios, increased transcripts and increased peptide counts for genes in the core Rex regulon. We conclude that one mode of (per)chlorate and nitrate toxicity is as direct inhibitors of the central sulfate-reduction pathway. Our results demonstrate that (per)chlorate are more potent inhibitors than nitrate in both pure cultures and communities, implying that they represent an attractive alternative for controlling sulfidogenesis in industrial ecosystems. Of these, perchlorate offers better application logistics because of its inhibitory potency, solubility, relative chemical stability, low affinity for mineral cations and high mobility in environmental systems.
我们研究了高氯酸盐(ClO₄⁻)和氯酸盐(ClO₃⁻)(统称为(高)氯酸盐),并将其与硝酸盐进行比较,以探究它们作为嗜温性硫酸盐还原微生物(SRMs)产生硫化物(H₂S)的潜在抑制剂的情况。我们证明了(高)氯酸盐在纯培养物和未定义的产硫化物群落中作为直接SRM抑制剂的特异性和效力。我们证明(高)氯酸盐和硝酸盐是拮抗抑制剂,且抗性是交叉诱导的,这意味着这些化合物至少共享一种共同的抗性机制。使用标记转座子文库,我们鉴定了阿拉斯加脱硫弧菌G20中负责敏感性和抗性的基因。我们发现,中央硫酸盐还原途径的阻遏物Dde_2702(Rex)中的突变体对(高)氯酸盐和硝酸盐均具有抗性。一般来说,Rex会响应细胞内NADH:NAD⁺比例的增加而解除对其调控子的抑制。在呼吸性硫酸盐还原受到抑制的细胞中,NADH:NAD⁺比例应该会增加,从而导致硫酸盐还原途径的去抑制。支持这一点的是,在受到(高)氯酸盐或硝酸盐胁迫的野生型G20中,我们观察到核心Rex调控子中的基因的NADH:NAD⁺比例更高、转录本增加且肽计数增加。我们得出结论,(高)氯酸盐和硝酸盐毒性的一种模式是作为中央硫酸盐还原途径的直接抑制剂。我们的结果表明,在纯培养物和群落中,(高)氯酸盐都是比硝酸盐更有效的抑制剂,这意味着它们是控制工业生态系统中硫化物生成的有吸引力的替代物。其中,高氯酸盐因其抑制效力、溶解度、相对化学稳定性、对矿物阳离子的低亲和力以及在环境系统中的高迁移率而具有更好的应用便利性。