Suppr超能文献

一种使用准种理论推断患者源病毒适应性景观的框架。

A framework for inferring fitness landscapes of patient-derived viruses using quasispecies theory.

作者信息

Seifert David, Di Giallonardo Francesca, Metzner Karin J, Günthard Huldrych F, Beerenwinkel Niko

机构信息

Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland Swiss Institute of Bioinformatics, Basel 4058, Switzerland.

Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich 8091, Switzerland.

出版信息

Genetics. 2015 Jan;199(1):191-203. doi: 10.1534/genetics.114.172312. Epub 2014 Nov 17.

Abstract

Fitness is a central quantity in evolutionary models of viruses. However, it remains difficult to determine viral fitness experimentally, and existing in vitro assays can be poor predictors of in vivo fitness of viral populations within their hosts. Next-generation sequencing can nowadays provide snapshots of evolving virus populations, and these data offer new opportunities for inferring viral fitness. Using the equilibrium distribution of the quasispecies model, an established model of intrahost viral evolution, we linked fitness parameters to the composition of the virus population, which can be estimated by next-generation sequencing. For inference, we developed a Bayesian Markov chain Monte Carlo method to sample from the posterior distribution of fitness values. The sampler can overcome situations where no maximum-likelihood estimator exists, and it can adaptively learn the posterior distribution of highly correlated fitness landscapes without prior knowledge of their shape. We tested our approach on simulated data and applied it to clinical human immunodeficiency virus 1 samples to estimate their fitness landscapes in vivo. The posterior fitness distributions allowed for differentiating viral haplotypes from each other, for determining neutral haplotype networks, in which no haplotype is more or less credibly fit than any other, and for detecting epistasis in fitness landscapes. Our implemented approach, called QuasiFit, is available at http://www.cbg.ethz.ch/software/quasifit.

摘要

适应性是病毒进化模型中的一个核心量。然而,通过实验确定病毒适应性仍然很困难,现有的体外检测可能无法很好地预测病毒群体在其宿主内的体内适应性。如今,下一代测序可以提供不断进化的病毒群体的快照,这些数据为推断病毒适应性提供了新的机会。利用准种模型(一种已确立的宿主内病毒进化模型)的平衡分布,我们将适应性参数与病毒群体的组成联系起来,而病毒群体组成可通过下一代测序进行估计。为了进行推断,我们开发了一种贝叶斯马尔可夫链蒙特卡罗方法,以便从适应性值的后验分布中进行采样。该采样器可以克服不存在最大似然估计器的情况,并且它可以在无需事先了解其形状的情况下,自适应地学习高度相关的适应性景观的后验分布。我们在模拟数据上测试了我们的方法,并将其应用于临床人类免疫缺陷病毒1样本,以估计其在体内的适应性景观。后验适应性分布有助于区分病毒单倍型,确定中性单倍型网络(其中没有任何单倍型比其他单倍型更可信或更不可信),以及检测适应性景观中的上位性。我们实现的方法称为QuasiFit,可在http://www.cbg.ethz.ch/software/quasifit获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6d1/4286684/6d7e78d5d0e8/191fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验