Suppr超能文献

通过表面设计控制纳米颗粒对生物膜的渗透

Control of nanoparticle penetration into biofilms through surface design.

作者信息

Li Xiaoning, Yeh Yi-Cheun, Giri Karuna, Mout Rubul, Landis Ryan F, Prakash Y S, Rotello Vincent M

机构信息

Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, 01003, USA.

出版信息

Chem Commun (Camb). 2015;51(2):282-5. doi: 10.1039/c4cc07737g. Epub 2014 Nov 18.

Abstract

Quantum dots were used as fluorescent probes to investigate nanoparticle penetration into biofilms. The particle penetration behavior was found to be controlled by surface chemical properties.

摘要

量子点被用作荧光探针来研究纳米颗粒对生物膜的渗透。研究发现颗粒的渗透行为受表面化学性质的控制。

相似文献

1
Control of nanoparticle penetration into biofilms through surface design.
Chem Commun (Camb). 2015;51(2):282-5. doi: 10.1039/c4cc07737g. Epub 2014 Nov 18.
3
The performance of gradient alloy quantum dots in cell labeling.
Biomaterials. 2014 Aug;35(26):7249-58. doi: 10.1016/j.biomaterials.2014.05.023. Epub 2014 Jun 2.
4
From metal-organic framework to intrinsically fluorescent carbon nanodots.
Chemistry. 2014 Jul 1;20(27):8279-82. doi: 10.1002/chem.201402982. Epub 2014 May 30.
5
Stability of fluorescent labels in PLGA polymeric nanoparticles: Quantum dots versus organic dyes.
Int J Pharm. 2015 Oct 15;494(1):471-8. doi: 10.1016/j.ijpharm.2015.08.050. Epub 2015 Aug 22.
6
Stable small quantum dots for synaptic receptor tracking on live neurons.
Angew Chem Int Ed Engl. 2014 Nov 10;53(46):12484-8. doi: 10.1002/anie.201405735. Epub 2014 Sep 26.
8
Synthesis and characterization of ZnS:Mn/ZnS core/shell nanoparticles for tumor targeting and imaging in vivo.
J Biomater Appl. 2013 Aug;28(2):232-40. doi: 10.1177/0885328212444642. Epub 2012 Apr 24.
9
Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging.
Acc Chem Res. 2014 Jan 21;47(1):20-30. doi: 10.1021/ar400023s. Epub 2013 Aug 2.

引用本文的文献

1
Targeting Bacterial Biofilms on Medical Implants: Current and Emerging Approaches.
Antibiotics (Basel). 2025 Aug 6;14(8):802. doi: 10.3390/antibiotics14080802.
2
Exploratory study of nanoparticle interaction with intraorally formed dental biofilms.
BMC Oral Health. 2025 Aug 22;25(1):1355. doi: 10.1186/s12903-025-06703-x.
3
Biogenic copper and copper oxide nanoparticles to combat multidrug-resistant : Green synthesis, mechanisms, resistance, and future perspectives.
Biotechnol Rep (Amst). 2025 May 6;46:e00896. doi: 10.1016/j.btre.2025.e00896. eCollection 2025 Jun.
4
Decoding interactions between biofilms and DNA nanoparticles.
Biofilm. 2025 Feb 6;9:100260. doi: 10.1016/j.bioflm.2025.100260. eCollection 2025 Jun.
5
-Mediated Gold Nanoparticles Exhibit Antibiofilm and Antivirulence Activities Against and .
Antibiotics (Basel). 2025 Feb 11;14(2):182. doi: 10.3390/antibiotics14020182.
6
7
Quorum Quenching Approaches against Bacterial-Biofilm-Induced Antibiotic Resistance.
Antibiotics (Basel). 2024 Jul 3;13(7):619. doi: 10.3390/antibiotics13070619.
8
Surface-Charge Tuned Polymeric Nanoemulsions for Carvacrol Delivery in Interkingdom Biofilms.
ACS Appl Mater Interfaces. 2024 Jul 24;16(29):37613-37622. doi: 10.1021/acsami.4c06618. Epub 2024 Jul 15.
9
A review of recent advances in the use of complex metal nanostructures for biomedical applications from diagnosis to treatment.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2024 May-Jun;16(3):e1959. doi: 10.1002/wnan.1959.
10
State-of-the-Art Review on Inhalable Lipid and Polymer Nanocarriers: Design and Development Perspectives.
Pharmaceutics. 2024 Mar 1;16(3):347. doi: 10.3390/pharmaceutics16030347.

本文引用的文献

1
Patterned hydrophobic domains in the exopolymer matrix of Shewanella oneidensis MR-1 biofilms.
Appl Environ Microbiol. 2013 Feb;79(4):1400-2. doi: 10.1128/AEM.03054-12. Epub 2012 Dec 7.
2
Biofilm infections, their resilience to therapy and innovative treatment strategies.
J Intern Med. 2012 Dec;272(6):541-61. doi: 10.1111/joim.12004. Epub 2012 Oct 29.
3
Correlative time-resolved fluorescence microscopy to assess antibiotic diffusion-reaction in biofilms.
Antimicrob Agents Chemother. 2012 Jun;56(6):3349-58. doi: 10.1128/AAC.00216-12. Epub 2012 Mar 26.
4
Beauty is skin deep: a surface monolayer perspective on nanoparticle interactions with cells and bio-macromolecules.
Small. 2011 Jul 18;7(14):1903-18. doi: 10.1002/smll.201100478. Epub 2011 Jun 14.
5
Surface-engineered quantum dots for the labeling of hydrophobic microdomains in bacterial biofilms.
Biomaterials. 2011 Aug;32(23):5459-70. doi: 10.1016/j.biomaterials.2011.04.019. Epub 2011 May 5.
6
Nano meets biology: structure and function at the nanoparticle interface.
Langmuir. 2011 Sep 6;27(17):10376-85. doi: 10.1021/la2004535. Epub 2011 Apr 8.
7
Synthesis of cationic quantum dots via a two-step ligand exchange process.
Chem Commun (Camb). 2011 Mar 21;47(11):3069-71. doi: 10.1039/c0cc04975a. Epub 2011 Feb 8.
8
Association of quantum dot nanoparticles with Pseudomonas aeruginosa biofilm.
J Environ Qual. 2010 Nov-Dec;39(6):1934-41. doi: 10.2134/jeq2009.0455.
10
The biofilm matrix.
Nat Rev Microbiol. 2010 Sep;8(9):623-33. doi: 10.1038/nrmicro2415. Epub 2010 Aug 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验