Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK.
Australian Centre for Microscopy and Microanalysis, School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.
Nat Commun. 2014 Nov 19;5:5501. doi: 10.1038/ncomms6501.
Microscopy encompasses a wide variety of forms and scales. So too does the array of simulation techniques developed that correlate to and build upon microstructural information. Nevertheless, a true nexus between microscopy and atomistic simulations is lacking. Atom probe has emerged as a potential means of achieving this goal. Atom probe generates three-dimensional atomistic images in a format almost identical to many atomistic simulations. However, this data is imperfect, preventing input into computational algorithms to predict material properties. Here we describe a methodology to overcome these limitations, based on a hybrid data format, blending atom probe and predictive Monte Carlo simulations. We create atomically complete and lattice-bound models of material specimens. This hybrid data can then be used as direct input into density functional theory simulations to calculate local energetics and elastic properties. This research demonstrates the role that atom probe combined with theoretical approaches can play in modern materials engineering.
显微镜涵盖了多种形式和规模。与之相关的模拟技术也层出不穷,这些技术与微观结构信息相互关联并在此基础上发展。然而,显微镜和原子级模拟之间真正的联系却缺乏。原子探针已经成为实现这一目标的一种潜在手段。原子探针以与许多原子级模拟几乎相同的格式生成三维原子级图像。然而,这些数据并不完美,无法输入到计算算法中以预测材料性能。在这里,我们描述了一种基于混合数据格式的克服这些限制的方法,该格式融合了原子探针和预测性蒙特卡罗模拟。我们创建了材料样本的原子完整和晶格约束模型。然后,这种混合数据可以直接用作密度泛函理论模拟的输入,以计算局部能量和弹性性质。这项研究展示了原子探针与理论方法相结合在现代材料工程中的作用。