Suppr超能文献

DNA 折纸纳米结构在纳米孔阵列中的吸附。

On the Adsorption of DNA Origami Nanostructures in Nanohole Arrays.

出版信息

Langmuir. 2018 Dec 11;34(49):14757-14765. doi: 10.1021/acs.langmuir.8b00793. Epub 2018 May 22.

Abstract

DNA origami nanostructures are versatile substrates for the controlled arrangement of molecular capture sites with nanometer precision and thus have many promising applications in single-molecule bioanalysis. Here, we investigate the adsorption of DNA origami nanostructures in nanohole arrays which represent an important class of biosensors and may benefit from the incorporation of DNA origami-based molecular probes. Nanoholes with well-defined diameter that enable the adsorption of single DNA origami triangles are fabricated in Au films on Si wafers by nanosphere lithography. The efficiency of directed DNA origami adsorption on the exposed SiO areas at the bottoms of the nanoholes is evaluated in dependence of various parameters, i.e., Mg and DNA origami concentrations, buffer strength, adsorption time, and nanohole diameter. We observe that the buffer strength has a surprisingly strong effect on DNA origami adsorption in the nanoholes and that multiple DNA origami triangles with 120 nm edge length can adsorb in nanoholes as small as 120 nm in diameter. We attribute the latter observation to the low lateral mobility of once adsorbed DNA origami on the SiO surface, in combination with parasitic adsorption to the Au film. Although parasitic adsorption can be suppressed by modifying the Au film with a hydrophobic self-assembled monolayer, the limited surface mobility of the adsorbed DNA origami still leads to poor localization accuracy in the nanoholes and results in many DNA origami crossing the boundary to the Au film even under optimized conditions. We discuss possible ways to minimize this effect by varying the composition of the adsorption buffer, employing different fabrication conditions, or using other substrate materials for nanohole array fabrication.

摘要

DNA 折纸纳米结构是一种多功能的基质,可用于以纳米级精度精确控制分子捕获位点的排列,因此在单分子生物分析中有许多有前途的应用。在这里,我们研究了 DNA 折纸纳米结构在纳米孔阵列中的吸附,纳米孔阵列是一类重要的生物传感器,可能受益于基于 DNA 折纸的分子探针的结合。通过纳米球光刻技术,在 Si 晶片上的 Au 薄膜中制造具有明确定义直径的纳米孔,这些纳米孔可用于吸附单个 DNA 折纸三角形。在各种参数(即 Mg 和 DNA 折纸浓度、缓冲液强度、吸附时间和纳米孔直径)的影响下,评估了 DNA 折纸在纳米孔暴露 SiO 区域上的定向吸附效率。我们观察到缓冲液强度对纳米孔中 DNA 折纸吸附具有惊人的强烈影响,边长为 120nm 的多个 DNA 折纸三角形可以吸附在直径小至 120nm 的纳米孔中。我们将后一种观察归因于一旦在 SiO 表面吸附,DNA 折纸的侧向迁移率较低,再加上与 Au 薄膜的寄生吸附。虽然通过用疏水性自组装单层修饰 Au 薄膜可以抑制寄生吸附,但吸附的 DNA 折纸的有限表面迁移率仍导致在纳米孔中定位精度较差,即使在优化条件下,许多 DNA 折纸也会越过边界进入 Au 薄膜。我们讨论了通过改变吸附缓冲液的组成、采用不同的制造条件或使用其他基底材料来制造纳米孔阵列来最小化这种效应的可能方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验