Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, Munich, Germany.
Nat Nanotechnol. 2023 Dec;18(12):1456-1462. doi: 10.1038/s41565-023-01487-z. Epub 2023 Aug 28.
The combination of lithographic methods with two-dimensional DNA origami self-assembly has led, among others, to the development of photonic crystal cavity arrays and the exploration of sensing nanoarrays where molecular devices are patterned on the sub-micrometre scale. Here we extend this concept to the third dimension by mounting three-dimensional DNA origami onto nanopatterned substrates, followed by silicification to provide hybrid DNA-silica structures exhibiting mechanical and chemical stability and achieving feature sizes in the sub-10-nm regime. Our versatile and scalable method relying on self-assembly at ambient temperatures offers the potential to three-dimensionally position any inorganic and organic components compatible with DNA origami nanoarchitecture, demonstrated here with gold nanoparticles. This way of nanotexturing could provide a route for the low-cost production of complex and three-dimensionally patterned surfaces and integrated devices designed on the molecular level and reaching macroscopic dimensions.
通过将光刻方法与二维 DNA 折纸自组装相结合,已经开发出了光子晶体腔阵列,并探索了传感纳米阵列,其中分子器件在亚微米尺度上进行图案化。在这里,我们通过将三维 DNA 折纸安装在纳米图案化的基底上,然后进行硅化,将这一概念扩展到了第三个维度,从而得到了具有机械和化学稳定性的混合 DNA-硅结构,并实现了亚 10nm 尺寸的特征尺寸。我们的方法依赖于在环境温度下的自组装,具有多功能性和可扩展性,为任何与 DNA 折纸纳米结构兼容的无机和有机组件的三维定位提供了可能,这里通过金纳米颗粒证明了这一点。这种纳米结构的方法为低成本生产复杂的三维图案化表面以及基于分子水平设计并达到宏观尺寸的集成器件提供了一种途径。