Suppr超能文献

光合生物中ATP硫酸化酶的多样性与调控

Diversity and regulation of ATP sulfurylase in photosynthetic organisms.

作者信息

Prioretti Laura, Gontero Brigitte, Hell Ruediger, Giordano Mario

机构信息

Laboratory of Algal and Plant Physiology, Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche Ancona, Italy.

Aix-Marseille Université Centre National de la Recherche Scientifique, BL' Unité de Bioénergétique et Ingénierie des Protéines UMR 7281 Marseille, France.

出版信息

Front Plant Sci. 2014 Nov 5;5:597. doi: 10.3389/fpls.2014.00597. eCollection 2014.

Abstract

ATP sulfurylase (ATPS) catalyzes the first committed step in the sulfate assimilation pathway, the activation of sulfate prior to its reduction. ATPS has been studied in only a few model organisms and even in these cases to a much smaller extent than the sulfate reduction and cysteine synthesis enzymes. This is possibly because the latter were considered of greater regulatory importance for sulfate assimilation. Recent evidences (reported in this paper) challenge this view and suggest that ATPS may have a crucial regulatory role in sulfate assimilation, at least in algae. In the ensuing text, we summarize the current knowledge on ATPS, with special attention to the processes that control its activity and gene(s) expression in algae. Special attention is given to algae ATPS proteins. The focus on algae is the consequence of the fact that a comprehensive investigation of ATPS revealed that the algal enzymes, especially those that are most likely involved in the pathway of sulfate reduction to cysteine, possess features that are not present in other organisms. Remarkably, algal ATPS proteins show a great diversity of isoforms and a high content of cysteine residues, whose positions are often conserved. According to the occurrence of cysteine residues, the ATPS of eukaryotic algae is closer to that of marine cyanobacteria of the genera Synechococcus and Prochlorococcus and is more distant from that of freshwater cyanobacteria. These characteristics might have evolved in parallel with the radiation of algae in the oceans and the increase of sulfate concentration in seawater.

摘要

ATP硫酸化酶(ATPS)催化硫酸盐同化途径中的第一个关键步骤,即硫酸盐在还原之前的激活。ATPS仅在少数模式生物中得到研究,而且即便在这些生物中,其研究程度也远低于硫酸盐还原酶和半胱氨酸合成酶。这可能是因为后者被认为对硫酸盐同化具有更重要的调节作用。最近的证据(本文报道)对这一观点提出了挑战,并表明ATPS可能在硫酸盐同化中具有关键的调节作用,至少在藻类中是如此。在接下来的内容中,我们总结了关于ATPS的现有知识,特别关注控制其活性和藻类中基因表达的过程。我们特别关注藻类ATPS蛋白。关注藻类是因为对ATPS的全面研究表明,藻类酶,尤其是那些最有可能参与硫酸盐还原为半胱氨酸途径的酶,具有其他生物所没有的特征。值得注意的是,藻类ATPS蛋白表现出多种同工型,并且半胱氨酸残基含量很高,其位置通常是保守的。根据半胱氨酸残基的出现情况,真核藻类的ATPS更接近聚球藻属和原绿球藻属的海洋蓝细菌,而与淡水蓝细菌的ATPS距离更远。这些特征可能与藻类在海洋中的辐射以及海水中硫酸盐浓度的增加同时进化而来。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b837/4220642/4ee2d6306994/fpls-05-00597-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验