Suppr超能文献

基于光激活绿色荧光蛋白的活细胞中线粒体融合及线粒体网络复杂性的可视化与定量分析

Photoactivatable green fluorescent protein-based visualization and quantification of mitochondrial fusion and mitochondrial network complexity in living cells.

作者信息

Karbowski Mariusz, Cleland Megan M, Roelofs Brian A

机构信息

Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA.

Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.

出版信息

Methods Enzymol. 2014;547:57-73. doi: 10.1016/B978-0-12-801415-8.00004-7.

Abstract

Technological improvements in microscopy and the development of mitochondria-specific imaging molecular tools have illuminated the dynamic rearrangements of these essential organelles. These rearrangements are mainly the result of two opposing processes: mitochondrial fusion and mitochondrial fission. Consistent with this, in addition to mitochondrial motility, these two processes are major factors determining the overall degree of continuity of the mitochondrial network, as well as the average size of mitochondria within the cell. In this chapter, we detail the use of advanced confocal microscopy and mitochondrial matrix-targeted photoactivatable green fluorescent protein (mito-PAGFP) for the investigation of mitochondrial dynamics. We focus on direct visualization and quantification of mitochondrial fusion and mitochondrial network complexity in living mammalian cells. These assays were instrumental in important recent discoveries within the field of mitochondrial biology, including the role of mitochondrial fusion in the activation of mitochondrial steps in apoptosis, participation of Bcl-2 family proteins in mitochondrial morphogenesis, and stress-induced mitochondrial hyperfusion. We present some basic directions that should be helpful in designing mito-PAGFP-based experiments. Furthermore, since analyses of mitochondrial fusion using mito-PAGFP-based assays rely on time-lapse imaging, critical parameters of time-lapse microscopy and cell preparation are also discussed.

摘要

显微镜技术的改进以及线粒体特异性成像分子工具的发展,揭示了这些重要细胞器的动态重排。这些重排主要是由两个相反的过程导致的:线粒体融合和线粒体分裂。与此一致的是,除了线粒体运动性外,这两个过程是决定线粒体网络整体连续程度以及细胞内线粒体平均大小的主要因素。在本章中,我们详细介绍了先进的共聚焦显微镜和线粒体基质靶向的光激活绿色荧光蛋白(mito-PAGFP)在研究线粒体动力学中的应用。我们专注于在活的哺乳动物细胞中线粒体融合和线粒体网络复杂性的直接可视化和定量分析。这些实验方法对线粒体生物学领域最近的重要发现起到了推动作用,包括线粒体融合在凋亡中线粒体步骤激活中的作用、Bcl-2家族蛋白参与线粒体形态发生以及应激诱导的线粒体过度融合。我们给出了一些有助于设计基于mito-PAGFP的实验的基本指导方向。此外,由于使用基于mito-PAGFP的实验方法分析线粒体融合依赖于延时成像,所以还讨论了延时显微镜和细胞制备的关键参数。

相似文献

3
Monitoring mitochondrial dynamics with photoactivatable [corrected] green fluorescent protein.
Methods Enzymol. 2009;457:289-304. doi: 10.1016/S0076-6879(09)05016-2.
4
Monitoring the Mitochondrial Dynamics in Mammalian Cells.
Methods Mol Biol. 2018;1782:267-285. doi: 10.1007/978-1-4939-7831-1_15.
5
Airyscan super-resolution microscopy of mitochondrial morphology and dynamics in living tumor cells.
Microsc Res Tech. 2018 Feb;81(2):115-128. doi: 10.1002/jemt.22968. Epub 2017 Nov 13.
6
Activating photoactivatable proteins with laser light to visualize membrane systems and membrane traffic in living cells.
Cold Spring Harb Protoc. 2011 Nov 1;2011(11):1368-9. doi: 10.1101/pdb.prot066571.
7
Time-lapse imaging of membrane traffic in living cells.
Cold Spring Harb Protoc. 2011 Nov 1;2011(11):1362-5. doi: 10.1101/pdb.prot066555.
8
High-throughput detection and quantification of mitochondrial fusion through imaging flow cytometry.
Cytometry A. 2016 Aug;89(8):708-19. doi: 10.1002/cyto.a.22891. Epub 2016 Jul 7.
9
Methods to Assess Mitochondrial Morphology in Mammalian Cells Mounting Autophagic or Mitophagic Responses.
Methods Enzymol. 2017;588:171-186. doi: 10.1016/bs.mie.2016.09.080. Epub 2016 Nov 12.

引用本文的文献

1
The Matrix of Mitochondrial Imaging: Exploring Spatial Dimensions.
Biomolecules. 2025 Feb 5;15(2):229. doi: 10.3390/biom15020229.
2
Mitochondria- and ER-associated actin are required for mitochondrial fusion.
Nat Commun. 2025 Jan 7;16(1):451. doi: 10.1038/s41467-024-55758-x.
3
Outer mitochondrial membrane E3 Ub ligase MARCH5 controls de novo peroxisome biogenesis.
Dev Cell. 2025 Jan 6;60(1):40-50.e5. doi: 10.1016/j.devcel.2024.09.010. Epub 2024 Oct 17.
4
An interphase actin wave promotes mitochondrial content mixing and organelle homeostasis.
Nat Commun. 2024 May 7;15(1):3793. doi: 10.1038/s41467-024-48189-1.
6
Mitochondria- and ER-associated actin are required for mitochondrial fusion.
bioRxiv. 2024 Jul 6:2023.06.13.544768. doi: 10.1101/2023.06.13.544768.
7
Spatial and temporal dynamics of ATP synthase from mitochondria toward the cell surface.
Commun Biol. 2023 Apr 18;6(1):427. doi: 10.1038/s42003-023-04785-3.
8
Myosin II proteins are required for organization of calcium-induced actin networks upstream of mitochondrial division.
Mol Biol Cell. 2022 Jun 1;33(7):ar63. doi: 10.1091/mbc.E22-01-0005. Epub 2022 Apr 15.
9
All for one: changes in mitochondrial morphology and activity during syncytial oogenesis†.
Biol Reprod. 2022 Jun 13;106(6):1232-1253. doi: 10.1093/biolre/ioac035.

本文引用的文献

1
Impaired mitochondrial dynamics and bioenergetics in diabetic skeletal muscle.
PLoS One. 2014 Mar 21;9(3):e92810. doi: 10.1371/journal.pone.0092810. eCollection 2014.
2
The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission.
J Cell Biol. 2014 Mar 17;204(6):919-29. doi: 10.1083/jcb.201308006. Epub 2014 Mar 10.
3
Miro1 regulates intercellular mitochondrial transport & enhances mesenchymal stem cell rescue efficacy.
EMBO J. 2014 May 2;33(9):994-1010. doi: 10.1002/embj.201386030. Epub 2014 Jan 15.
5
Impaired complex IV activity in response to loss of LRPPRC function can be compensated by mitochondrial hyperfusion.
Proc Natl Acad Sci U S A. 2013 Aug 6;110(32):E2967-76. doi: 10.1073/pnas.1303872110. Epub 2013 Jul 22.
6
Fusion and fission: interlinked processes critical for mitochondrial health.
Annu Rev Genet. 2012;46:265-87. doi: 10.1146/annurev-genet-110410-132529. Epub 2012 Aug 29.
8
Mitochondria: in sickness and in health.
Cell. 2012 Mar 16;148(6):1145-59. doi: 10.1016/j.cell.2012.02.035.
9
Fluorescent proteins for FRET microscopy: monitoring protein interactions in living cells.
Bioessays. 2012 May;34(5):341-50. doi: 10.1002/bies.201100098. Epub 2012 Mar 7.
10
Mitochondrial fusion and division: Regulation and role in cell viability.
Semin Cell Dev Biol. 2009 May;20(3):365-74. doi: 10.1016/j.semcdb.2008.12.012.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验