Karbowski Mariusz, Cleland Megan M, Roelofs Brian A
Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA.
Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
Methods Enzymol. 2014;547:57-73. doi: 10.1016/B978-0-12-801415-8.00004-7.
Technological improvements in microscopy and the development of mitochondria-specific imaging molecular tools have illuminated the dynamic rearrangements of these essential organelles. These rearrangements are mainly the result of two opposing processes: mitochondrial fusion and mitochondrial fission. Consistent with this, in addition to mitochondrial motility, these two processes are major factors determining the overall degree of continuity of the mitochondrial network, as well as the average size of mitochondria within the cell. In this chapter, we detail the use of advanced confocal microscopy and mitochondrial matrix-targeted photoactivatable green fluorescent protein (mito-PAGFP) for the investigation of mitochondrial dynamics. We focus on direct visualization and quantification of mitochondrial fusion and mitochondrial network complexity in living mammalian cells. These assays were instrumental in important recent discoveries within the field of mitochondrial biology, including the role of mitochondrial fusion in the activation of mitochondrial steps in apoptosis, participation of Bcl-2 family proteins in mitochondrial morphogenesis, and stress-induced mitochondrial hyperfusion. We present some basic directions that should be helpful in designing mito-PAGFP-based experiments. Furthermore, since analyses of mitochondrial fusion using mito-PAGFP-based assays rely on time-lapse imaging, critical parameters of time-lapse microscopy and cell preparation are also discussed.
显微镜技术的改进以及线粒体特异性成像分子工具的发展,揭示了这些重要细胞器的动态重排。这些重排主要是由两个相反的过程导致的:线粒体融合和线粒体分裂。与此一致的是,除了线粒体运动性外,这两个过程是决定线粒体网络整体连续程度以及细胞内线粒体平均大小的主要因素。在本章中,我们详细介绍了先进的共聚焦显微镜和线粒体基质靶向的光激活绿色荧光蛋白(mito-PAGFP)在研究线粒体动力学中的应用。我们专注于在活的哺乳动物细胞中线粒体融合和线粒体网络复杂性的直接可视化和定量分析。这些实验方法对线粒体生物学领域最近的重要发现起到了推动作用,包括线粒体融合在凋亡中线粒体步骤激活中的作用、Bcl-2家族蛋白参与线粒体形态发生以及应激诱导的线粒体过度融合。我们给出了一些有助于设计基于mito-PAGFP的实验的基本指导方向。此外,由于使用基于mito-PAGFP的实验方法分析线粒体融合依赖于延时成像,所以还讨论了延时显微镜和细胞制备的关键参数。