Ramírez-Aportela Erney, López-Blanco José Ramón, Andreu José Manuel, Chacón Pablo
Department of Biological Physical Chemistry, Instituto de Química-Física Rocasolano, CSIC, Madrid, Spain; Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain.
Department of Biological Physical Chemistry, Instituto de Química-Física Rocasolano, CSIC, Madrid, Spain.
Biophys J. 2014 Nov 4;107(9):2164-76. doi: 10.1016/j.bpj.2014.09.033.
Bacterial cytoskeletal protein FtsZ assembles in a head-to-tail manner, forming dynamic filaments that are essential for cell division. Here, we study their dynamics using unbiased atomistic molecular simulations from representative filament crystal structures. In agreement with experimental data, we find different filament curvatures that are supported by a nucleotide-regulated hinge motion between consecutive FtsZ monomers. Whereas GTP-FtsZ filaments bend and twist in a preferred orientation, thereby burying the nucleotide, the differently curved GDP-FtsZ filaments exhibit a heterogeneous distribution of open and closed interfaces between monomers. We identify a coordinated Mg(2+) ion as the key structural element in closing the nucleotide site and stabilizing GTP filaments, whereas the loss of the contacts with loop T7 from the next monomer in GDP filaments leads to open interfaces that are more prone to depolymerization. We monitored the FtsZ monomer assembly switch, which involves opening/closing of the cleft between the C-terminal domain and the H7 helix, and observed the relaxation of isolated and filament minus-end monomers into the closed-cleft inactive conformation. This result validates the proposed switch between the low-affinity monomeric closed-cleft conformation and the active open-cleft FtsZ conformation within filaments. Finally, we observed how the antibiotic PC190723 suppresses the disassembly switch and allosterically induces closure of the intermonomer interfaces, thus stabilizing the filament. Our studies provide detailed structural and dynamic insights into modulation of both the intrinsic curvature of the FtsZ filaments and the molecular switch coupled to the high-affinity end-wise association of FtsZ monomers.
细菌细胞骨架蛋白FtsZ以头对尾的方式组装,形成对细胞分裂至关重要的动态细丝。在这里,我们使用来自代表性细丝晶体结构的无偏原子分子模拟来研究它们的动力学。与实验数据一致,我们发现不同的细丝曲率,这是由连续FtsZ单体之间的核苷酸调节的铰链运动支持的。GTP - FtsZ细丝以优选方向弯曲和扭曲,从而掩埋核苷酸,而不同弯曲的GDP - FtsZ细丝在单体之间表现出开放和封闭界面的异质分布。我们确定一个配位的Mg(2+)离子是关闭核苷酸位点和稳定GTP细丝的关键结构元素,而GDP细丝中与下一个单体的环T7失去接触会导致更易于解聚的开放界面。我们监测了FtsZ单体组装开关,它涉及C末端结构域和H7螺旋之间裂隙的打开/关闭,并观察到孤立的和细丝负端单体松弛到裂隙关闭的无活性构象。这一结果验证了细丝内低亲和力单体裂隙关闭构象和活性开放裂隙FtsZ构象之间的提议转换。最后,我们观察了抗生素PC190723如何抑制拆解开关并变构诱导单体间界面的关闭,从而稳定细丝。我们的研究为FtsZ细丝的固有曲率调节以及与FtsZ单体高亲和力末端关联耦合的分子开关提供了详细的结构和动力学见解。