Suppr超能文献

通过大规模原子模拟理解核苷酸调节的FtsZ丝动力学和单体组装开关。

Understanding nucleotide-regulated FtsZ filament dynamics and the monomer assembly switch with large-scale atomistic simulations.

作者信息

Ramírez-Aportela Erney, López-Blanco José Ramón, Andreu José Manuel, Chacón Pablo

机构信息

Department of Biological Physical Chemistry, Instituto de Química-Física Rocasolano, CSIC, Madrid, Spain; Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain.

Department of Biological Physical Chemistry, Instituto de Química-Física Rocasolano, CSIC, Madrid, Spain.

出版信息

Biophys J. 2014 Nov 4;107(9):2164-76. doi: 10.1016/j.bpj.2014.09.033.

Abstract

Bacterial cytoskeletal protein FtsZ assembles in a head-to-tail manner, forming dynamic filaments that are essential for cell division. Here, we study their dynamics using unbiased atomistic molecular simulations from representative filament crystal structures. In agreement with experimental data, we find different filament curvatures that are supported by a nucleotide-regulated hinge motion between consecutive FtsZ monomers. Whereas GTP-FtsZ filaments bend and twist in a preferred orientation, thereby burying the nucleotide, the differently curved GDP-FtsZ filaments exhibit a heterogeneous distribution of open and closed interfaces between monomers. We identify a coordinated Mg(2+) ion as the key structural element in closing the nucleotide site and stabilizing GTP filaments, whereas the loss of the contacts with loop T7 from the next monomer in GDP filaments leads to open interfaces that are more prone to depolymerization. We monitored the FtsZ monomer assembly switch, which involves opening/closing of the cleft between the C-terminal domain and the H7 helix, and observed the relaxation of isolated and filament minus-end monomers into the closed-cleft inactive conformation. This result validates the proposed switch between the low-affinity monomeric closed-cleft conformation and the active open-cleft FtsZ conformation within filaments. Finally, we observed how the antibiotic PC190723 suppresses the disassembly switch and allosterically induces closure of the intermonomer interfaces, thus stabilizing the filament. Our studies provide detailed structural and dynamic insights into modulation of both the intrinsic curvature of the FtsZ filaments and the molecular switch coupled to the high-affinity end-wise association of FtsZ monomers.

摘要

细菌细胞骨架蛋白FtsZ以头对尾的方式组装,形成对细胞分裂至关重要的动态细丝。在这里,我们使用来自代表性细丝晶体结构的无偏原子分子模拟来研究它们的动力学。与实验数据一致,我们发现不同的细丝曲率,这是由连续FtsZ单体之间的核苷酸调节的铰链运动支持的。GTP - FtsZ细丝以优选方向弯曲和扭曲,从而掩埋核苷酸,而不同弯曲的GDP - FtsZ细丝在单体之间表现出开放和封闭界面的异质分布。我们确定一个配位的Mg(2+)离子是关闭核苷酸位点和稳定GTP细丝的关键结构元素,而GDP细丝中与下一个单体的环T7失去接触会导致更易于解聚的开放界面。我们监测了FtsZ单体组装开关,它涉及C末端结构域和H7螺旋之间裂隙的打开/关闭,并观察到孤立的和细丝负端单体松弛到裂隙关闭的无活性构象。这一结果验证了细丝内低亲和力单体裂隙关闭构象和活性开放裂隙FtsZ构象之间的提议转换。最后,我们观察了抗生素PC190723如何抑制拆解开关并变构诱导单体间界面的关闭,从而稳定细丝。我们的研究为FtsZ细丝的固有曲率调节以及与FtsZ单体高亲和力末端关联耦合的分子开关提供了详细的结构和动力学见解。

相似文献

2
Probing the conformational flexibility of monomeric FtsZ in GTP-bound, GDP-bound, and nucleotide-free states.
Biochemistry. 2013 May 21;52(20):3543-51. doi: 10.1021/bi400170f. Epub 2013 May 9.
3
Nucleotide-dependent conformations of FtsZ dimers and force generation observed through molecular dynamics simulations.
Proc Natl Acad Sci U S A. 2012 Jun 12;109(24):9432-7. doi: 10.1073/pnas.1120761109. Epub 2012 May 30.
4
Influence of GTP/GDP and magnesium ion on the solvated structure of the protein FtsZ: a molecular dynamics study.
J Biomol Struct Dyn. 2014;32(6):916-27. doi: 10.1080/07391102.2013.799436. Epub 2013 Jun 19.
5
Insights into nucleotide recognition by cell division protein FtsZ from a mant-GTP competition assay and molecular dynamics.
Biochemistry. 2010 Dec 14;49(49):10458-72. doi: 10.1021/bi101577p. Epub 2010 Nov 17.
6
Beyond a Fluorescent Probe: Inhibition of Cell Division Protein FtsZ by mant-GTP Elucidated by NMR and Biochemical Approaches.
ACS Chem Biol. 2015 Oct 16;10(10):2382-92. doi: 10.1021/acschembio.5b00444. Epub 2015 Aug 17.
7
Torsion and curvature of FtsZ filaments.
Soft Matter. 2014 Mar 28;10(12):1977-86. doi: 10.1039/c3sm52516c.
10
Self-Organization of FtsZ Polymers in Solution Reveals Spacer Role of the Disordered C-Terminal Tail.
Biophys J. 2017 Oct 17;113(8):1831-1844. doi: 10.1016/j.bpj.2017.08.046.

引用本文的文献

1
NMR study of the interaction between MinC and FtsZ and modeling of the FtsZ:MinC complex.
J Biol Chem. 2025 Mar;301(3):108169. doi: 10.1016/j.jbc.2025.108169. Epub 2025 Jan 9.
2
Complex state transitions of the bacterial cell division protein FtsZ.
Mol Biol Cell. 2024 Oct 1;35(10):ar130. doi: 10.1091/mbc.E23-11-0446. Epub 2024 Jul 31.
3
MipZ caps the plus-end of FtsZ polymers to promote their rapid disassembly.
Proc Natl Acad Sci U S A. 2022 Dec 13;119(50):e2208227119. doi: 10.1073/pnas.2208227119. Epub 2022 Dec 9.
4
FtsZ filament structures in different nucleotide states reveal the mechanism of assembly dynamics.
PLoS Biol. 2022 Mar 21;20(3):e3001497. doi: 10.1371/journal.pbio.3001497. eCollection 2022 Mar.
6
The Assembly Switch Mechanism of FtsZ Filament Revealed by All-Atom Molecular Dynamics Simulations and Coarse-Grained Models.
Front Microbiol. 2021 Mar 30;12:639883. doi: 10.3389/fmicb.2021.639883. eCollection 2021.
7
How Protein Filaments Treadmill.
Biophys J. 2020 Aug 18;119(4):717-720. doi: 10.1016/j.bpj.2020.06.035. Epub 2020 Jul 17.
8
Self-Organization of FtsZ Polymers in Solution Reveals Spacer Role of the Disordered C-Terminal Tail.
Biophys J. 2017 Oct 17;113(8):1831-1844. doi: 10.1016/j.bpj.2017.08.046.
9
The structural assembly switch of cell division protein FtsZ probed with fluorescent allosteric inhibitors.
Chem Sci. 2017 Feb 1;8(2):1525-1534. doi: 10.1039/c6sc03792e. Epub 2016 Oct 21.
10
FtsZ Constriction Force - Curved Protofilaments Bending Membranes.
Subcell Biochem. 2017;84:139-160. doi: 10.1007/978-3-319-53047-5_5.

本文引用的文献

1
GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation.
J Chem Theory Comput. 2008 Mar;4(3):435-47. doi: 10.1021/ct700301q.
3
Torsion and curvature of FtsZ filaments.
Soft Matter. 2014 Mar 28;10(12):1977-86. doi: 10.1039/c3sm52516c.
4
Structural change in FtsZ Induced by intermolecular interactions between bound GTP and the T7 loop.
J Biol Chem. 2014 Feb 7;289(6):3501-9. doi: 10.1074/jbc.M113.514901. Epub 2013 Dec 17.
5
The bacterial cell division proteins FtsA and FtsZ self-organize into dynamic cytoskeletal patterns.
Nat Cell Biol. 2014 Jan;16(1):38-46. doi: 10.1038/ncb2885. Epub 2013 Dec 8.
7
Chrysophaentins are competitive inhibitors of FtsZ and inhibit Z-ring formation in live bacteria.
Bioorg Med Chem. 2013 Sep 15;21(18):5673-8. doi: 10.1016/j.bmc.2013.07.033. Epub 2013 Jul 25.
8
FtsZ protofilaments use a hinge-opening mechanism for constrictive force generation.
Science. 2013 Jul 26;341(6144):392-5. doi: 10.1126/science.1239248.
9
Synthetic inhibitors of bacterial cell division targeting the GTP-binding site of FtsZ.
ACS Chem Biol. 2013 Sep 20;8(9):2072-83. doi: 10.1021/cb400208z. Epub 2013 Jul 31.
10
Identification of a new class of FtsZ inhibitors by structure-based design and in vitro screening.
J Chem Inf Model. 2013 Aug 26;53(8):2131-40. doi: 10.1021/ci400203f. Epub 2013 Jul 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验